References

  1. Y. Rao, H. Yang, D. Xue, Y. Guo, F. Qi, J. Ma, Sonolytic and sonophotolytic degradation of carbamazepine: kinetic and mechanisms, Ultrason. Sonochem., 32 (2016) 371–379.
  2. R.S. Rana, P. Singh, V. Kandari, R. Singh, R. Dobhal, S. Gupta, A review on characterization and bioremediation of pharmaceutical industries’ wastewater: an Indian perspective, Appl. Water Sci., 7 (2017) 1–12.
  3. V.M. Monsalvo, J. Lopez, M. Munoz, Z.M. de Pedro, J.A. Casas, A.F. Mohedano, J.J. Rodriguez, Application of Fenton-like oxidation as pre-treatment for carbamazepine biodegradation, Chem. Eng. J., 264 (2015) 856–862.
  4. S. Wang, N. Zhou, Removal of carbamazepine from aqueous solution using sono-activated persulfate process, Ultrason. Sonochem., 29 (2016) 156–162.
  5. Y. Zhang, S.-U. Geißen, C. Gal, Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies, Chemosphere, 73 (2008) 1151–1161.
  6. J.R. Domínguez, T. González, P. Palo, E.M. Cuerda-Correa, Fenton + Fenton-like integrated process for carbamazepine degradation: optimizing the system, Ind. Eng. Chem. Res., 51 (2012) 2531–2538.
  7. P. Braeutigam, M. Franke, R.J. Schneider, A. Lehmann, A. Stolle, B. Ondruschka, Degradation of carbamazepine in environmentally relevant concentrations in water by Hydrodynamic- Acoustic-Cavitation (HAC), Water Res., 46 (2012) 2469–2477.
  8. P. Oleszczuk, B. Pan, B. Xing, Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes, Environ. Sci. Technol., 43 (2009) 9167–9173.
  9. I. Vergili, Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources, J. Environ. Manage., 127 (2013) 177–187.
  10. L. Hu, H.M. Martin, O. Arce-Bulted, M.N. Sugihara, K.A. Keating, T.J. Strathmann, Oxidation of carbamazepine by Mn(VII) and Fe(VI): reaction kinetics and mechanism, Environ. Sci. Technol., 43 (2009) 509–515.
  11. A. Carabin, P. Drogui, D. Robert, Photocatalytic oxidation of carbamazepine: application of an experimental design methodology, Water Air Soil Pollut., 227 (2016) 122.
  12. A. Özcan, Y. Şahin, A.S. Koparal, M.A. Oturan, A comparative study on the efficiency of electro-Fenton process in the removal of propham from water, Appl. Catal., B, 89 (2009) 620–626.
  13. P.V. Nidheesh, Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review, Environ. Sci. Pollut. Res., 24 (2017) 27047–27069.
  14. B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: a review, Chem. Eng. Process. Process Intensif., 109 (2016) 178–189.
  15. P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton process for water and wastewater treatment: an overview, Desalination, 299 (2012) 1–15.
  16. W.-P. Ting, M.-C. Lu, Y.-H. Huang, Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process, J. Hazard. Mater., 161 (2009) 1484–1490.
  17. E. Bocos, O. Iglesias, M. Pazos, M. Ángeles Sanromán, Nickel foam a suitable alternative to increase the generation of Fenton’s reagents, Process Saf. Environ. Prot., 101 (2016) 34–44.
  18. J. Anotai, S. Singhadech, C.-C. Su, M.-C. Lu, Comparison of o-toluidine degradation by Fenton, electro-Fenton and photoelectro- Fenton processes, J. Hazard. Mater., 196 (2011) 395–401.
  19. P. V. Nidheesh, M. Zhou, M.A. Oturan, An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes, Chemosphere, 197 (2018) 210–227.
  20. S. Vasudevan, M.A. Oturan, Electrochemistry: as cause and cure in water pollution-an overview, Environ. Chem. Lett., 12 (2014) 97–108.
  21. S. Karthikeyan, A. Titus, A. Gnanamani, A.B. Mandal, G. Sekaran, Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes, Desalination, 281 (2011) 438–445.
  22. M. Muruganandham, R.P.S. Suri, M. Sillanpää, J.J. Wu, B. Ahmmad, S. Balachandran, M. Swaminathan, Recent developments in heterogeneous catalyzed environmental remediation processes, J. Nanosci. Nanotechnol., 14 (2014) 1898–1910.
  23. P. V. Nidheesh, Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review, RSC Adv., 5 (2015) 40552–40577.
  24. G. Bonyadinejad, M. Sarafraz, M. Khosravi, A. Ebrahimi, S.M. Taghavi-Shahri, R. Nateghi, S. Rastaghi, Electrochemical degradation of the Acid Orange 10 dye on a Ti/PbO2 anode assessed by response surface methodology, Korean J. Chem. Eng., 33 (2016) 189–196.
  25. A.M. Polcaro, S. Palmas, F. Renoldi, M. Mascia, On the performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical degradation of 2-chlorophenolfor wastewater treatment, J. Appl. Electrochem., 29 (1999) 147–151.
  26. C. Barrera-Díaz, P. Cañizares, F.J. Fernández, R. Natividad, M.A. Rodrigo, Electrochemical advanced oxidation processes: an overview of the current applications to actual industrial effluents, J. Mex. Chem. Soc., 58 (2014) 256–275.
  27. B. Hou, H. Han, H. Zhuang, P. Xu, S. Jia, K. Li, A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater, Bioresour. Technol., 196 (2015) 721–725.
  28. B. Hou, B. Ren, R. Deng, G. Zhu, Z. Wang, Z. Li, Threedimensional electro-Fenton oxidation of N-heterocyclic compounds with a novel catalytic particle electrode: high activity, wide pH range and catalytic mechanism, RSC Adv., 7 (2017) 15455–15462.
  29. Z. Ai, Z. Gao, L. Zhang, W. He, J.J. Yin, Core–shell structure dependent reactivity of Fe@Fe2O3 nanowires on aerobic degradation of 4-chlorophenol, Environ. Sci. Technol., 47 (2013) 5344–5352.
  30. J. Shi, Z. Ai, L. Zhang, Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles, Water Res., 59 (2014) 145–153.
  31. W. Shen, F. Lin, X. Jiang, H. Li, Z. Ai, L. Zhang, Efficient removal of bromate with core-shell Fe@F2O3 nanowires, Chem. Eng. J., 308 (2017) 880–888.
  32. W. Liu, Z. Ai, M. Cao, L. Zhang, Ferrous ions promoted aerobic simazine degradation with Fe@Fe2O3 core–shell nanowires, Appl. Catal., B, 150–151 (2014) 1–11.
  33. L. Zhu, Z. Ai, W. Ho, L. Zhang, Core–shell Fe-Fe2O3 nanostructures as effective persulfate activator for degradation of methyl orange, Sep. Purif. Technol., 108 (2013) 159–165.
  34. M. Panizza, C.A. Martinez-Huitle, Role of electrode materials for the anodic oxidation of a real landfill leachate – comparison between Ti–Ru–Sn ternary oxide, PbO2 and boron-doped diamond anode, Chemosphere, 90 (2013) 1455–1460.
  35. Z. Ai, Y. Cheng, L. Zhang, J. Qiu, Efficient removal of Cr(VI) from aqueous solution with Fe@Fe2O3 core−shell nanowires, Environ. Sci. Technol., 42 (2008) 6955–6960.
  36. Z. Ai, L. Lu, J. Li, L. Zhang, J. Qiu, M. Wu, Fe@Fe2O3 Core-shell nanowires as the iron reagent. 2. An efficient and reusable sono-fenton system working at neutral pH, J. Phys. Chem. C, 111 (2007) 7430–7436.
  37. Z. Ai, L. Lu, J. Li, L. Zhang, J. Qiu, M. Wu, Fe@Fe2O3 Coreshell nanowires as iron reagent. 1. Efficient degradation of rhodamine B by a novel sono-Fenton process, J. Phys. Chem. C, 111 (2007) 4087–4093.
  38. G. Bonyadinejad, M. Khosravi, A. Ebrahimi, R. Nateghi, S.M. Taghavi-Shahri, H. Mohammadi, Sonoelectrochemical mineralization of perfluorooctanoic acid using Ti/PbO2 anode assessed by response surface methodology, J. Environ. Health Sci. Eng., 13 (2015) 77.
  39. S. Yousefinejad, F. Honarasa, H. Montaseri, Linear solvent structure-polymer solubility and solvation energy relationships to study conductive polymer/carbon nanotube composite solutions, RSC Adv., 5 (2015) 42266–42275.
  40. E. Alfaya, O. Iglesias, M. Pazos, M.A. Sanromán, Environmental application of an industrial waste as catalyst for the electro-Fenton-like treatment of organic pollutants, RSC Adv., 5 (2015) 14416–14424.
  41. H. Jiang, Y. Sun, J. Feng, J. Wang, Heterogeneous electro-Fenton oxidation of azo dye methyl orange catalyzed by magnetic Fe3O4 nanoparticles, Water Sci. Technol., 74 (2016) 1116–1126.
  42. Z. He, C. Gao, M. Qian, Y. Shi, J. Chen, S. Song, Electro- Fenton process catalyzed by Fe3O4 magnetic nanoparticles for degradation of C.I. Reactive Blue 19 in aqueous solution: operating conditions, influence, and mechanism, Ind. Eng. Chem. Res., 53 (2014) 3435–3447.
  43. Z. Ai, T. Mei, J. Liu, J. Li, F. Jia, L. Zhang, J. Qiu, Fe@Fe2O3 core - shell nanowires as an iron reagent. 3. Their combination with CNTs as an effective oxygen-fed gas diffusion electrode in a neutral electro-Fenton system, J. Phys. Chem. C, 111 (2007) 14799–14803.
  44. H. Zhao, Y. Wang, Y. Wang, T. Cao, G. Zhao, Electro-Fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode: High activity, wide pH range and catalytic mechanism, Appl. Catal., B, 125 (2012) 120–127.
  45. M. Panizza, G. Cerisola, Electro-Fenton degradation of synthetic dyes, Water Res., 43 (2009) 339–344.
  46. P.V. Nidheesh, R. Gandhimathi, S. Velmathi, N.S. Sanjini, Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution, RSC Adv., 4 (2014) 5698–5708.
  47. F. Yu, M. Zhou, X. Yu, Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration, Electrochim. Acta, 163 (2015) 182–189.
  48. M.S. Yahya, N. Beqqal, A. Guessous, M.R. Arhoutane, K. El Kacemi, Degradation and mineralization of moxifloxacin antibiotic in aqueous medium by electro-Fenton process: kinetic assessment and oxidation products, Cogent Chem., 144 (2017) 1–11.
  49. H. Pourzamani, Y. Hajizadeh, N. Mengelizadeh, Application of three-dimensional electrofenton process using MWCNTs-Fe3O4 nanocomposite for removal of diclofenac, Process Saf. Environ. Prot., 119 (2018) 271–284.
  50. T. Sruthi, R. Gandhimathi, S.T. Ramesh, P.V. Nidheesh, Stabilized landfill leachate treatment using heterogeneous Fenton and electro-Fenton processes, Chemosphere, 210 (2018) 38–43.
  51. C. García-Gómez, P. Drogui, F. Zaviska, B. Seyhi, P. Gortáres-Moroyoqui, G. Buelna, C. Neira-sáenz, M. Estrada-Alvarado, R.G. Ulloa-Mercado, Experimental design methodology applied to electrochemical oxidation of carbamazepine using Ti/PbO2 and Ti/BDD electrodes, J. Electroanal. Chem., 732 (2014) 1–10.
  52. C. Jiang, J. Zhang, Progress and prospect in electro-Fenton process for wastewater treatment, J. Zhejiang Univ. Sci. A, 8 (2007) 1118–1125.
  53. Ö. Gökkuş, Y.Ş. Yıldız, Application of electro-Fenton process for medical waste sterilization plant wastewater, Desal. Wat. Treat., 57 (2016) 24934–24945.
  54. E. Bocos, M. Pazos, M.Á. Sanromán, Electro-Fenton treatment of imidazolium-based ionic liquids: kinetics and degradation pathways, RSC Adv., 6 (2016) 1958–1965.
  55. C. Zhang, M. Zhou, G. Ren, X. Yu, L. Ma, J. Yang, F. Yu, Heterogeneous electro-Fenton using modified iron–carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway, Water Res., 70 (2015) 414–424.
  56. O. Iglesias, J. Gómez, M. Pazos, M.Á. Sanromán, Electro-Fenton oxidation of imidacloprid by Fe alginate gel beads, Appl. Catal., B, 144 (2014) 416–424.
  57. C.-T. Wang, W.-L. Chou, M.-H. Chung, Y.-M. Kuo, COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode, Desalination, 253 (2010) 129–134.
  58. M. Zhou, Q. Yu, L. Lei, G. Barton, Electro-Fenton method for the removal of methyl red in an efficient electrochemical system, Sep. Purif. Technol., 57 (2007) 380–387.
  59. F. Iranpour, H. Pourzamani, N. Mengelizadeh, P. Bahrami, H. Mohammadi, Application of response surface methodology for optimization of reactive black 5 removal by three dimensional electro-Fenton process, J. Environ. Chem. Eng., 6 (2018) 3418–3435.
  60. H. Mohammadi, B. Bina, A. Ebrahimi, A novel three-dimensional electro-Fenton system and its application for degradation of anti-inflammatory pharmaceuticals: modeling and degradation pathways, Process Saf. Environ. Prot., 117 (2018) 200–213.
  61. Y. Wang, Y. Liu, T. Liu, S. Song, X. Gui, H. Liu, P. Tsiakaras, Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode, Appl. Catal., B, 156–157 (2014) 1–7.
  62. X. Ding, S. Wang, W. Shen, Y. Mu, L. Wang, H. Chen, L. Zhang, Fe@Fe2O3 promoted electrochemical mineralization of atrazine via a triazinon ring opening mechanism, Water Res., 112 (2017) 9–18.
  63. M. Malakootian, A. Moridi, Efficiency of electro-Fenton process in removing Acid Red 18 dye from aqueous solutions, Process Saf. Environ. Prot., 111 (2017) 138–147.
  64. H. Lei, H. Li, Z. Li, Z. Li, K. Chen, X. Zhang, H. Wang, Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode, Process Saf. Environ. Prot., 88 (2010) 431–438.
  65. B. Hou, H. Han, S. Jia, H. Zhuang, P. Xu, D. Wang, Heterogeneous electro-Fenton oxidation of catechol catalyzed by nano-Fe3O4: kinetics with the Fermi’s equation, J. Taiwan Inst. Chem. Eng., 56 (2015) 138–147.
  66. D. Gümüş, F. Akbal, Comparison of Fenton and electro-Fenton processes for oxidation of phenol, Process Saf. Environ. Prot., 103 (2016) 252–258.
  67. I. Ouiriemmi, A. Karrab, N. Oturan, M. Pazos, E. Rozales, A. Gadri, M.Á. Sanromán, S. Ammar, M.A. Oturan, Heterogeneous electro-Fenton using natural pyrite as solid catalyst for oxidative degradation of vanillic acid, J. Electroanal. Chem., 797 (2017) 69–77.
  68. S. Sathian, G. Radha, V. Shanmugapriya, M. Rajasimman, C. Karthikeyan, Optimization and kinetic studies on treatment of textile dye wastewater using Pleurotus floridanus, Appl. Water Sci., 3 (2013) 41–48.
  69. W. Wang, Q. Wu, N. Huang, T. Wang, H. Hu, Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species, Water Res., 98 (2016) 190–198.