References
- Y. Rao, H. Yang, D. Xue, Y. Guo, F. Qi, J. Ma, Sonolytic and
sonophotolytic degradation of carbamazepine: kinetic and
mechanisms, Ultrason. Sonochem., 32 (2016) 371–379.
- R.S. Rana, P. Singh, V. Kandari, R. Singh, R. Dobhal, S. Gupta,
A review on characterization and bioremediation of pharmaceutical
industries’ wastewater: an Indian perspective, Appl.
Water Sci., 7 (2017) 1–12.
- V.M. Monsalvo, J. Lopez, M. Munoz, Z.M. de Pedro, J.A. Casas,
A.F. Mohedano, J.J. Rodriguez, Application of Fenton-like
oxidation as pre-treatment for carbamazepine biodegradation,
Chem. Eng. J., 264 (2015) 856–862.
- S. Wang, N. Zhou, Removal of carbamazepine from aqueous
solution using sono-activated persulfate process, Ultrason.
Sonochem., 29 (2016) 156–162.
- Y. Zhang, S.-U. Geißen, C. Gal, Carbamazepine and diclofenac:
removal in wastewater treatment plants and occurrence in
water bodies, Chemosphere, 73 (2008) 1151–1161.
- J.R. Domínguez, T. González, P. Palo, E.M. Cuerda-Correa,
Fenton + Fenton-like integrated process for carbamazepine
degradation: optimizing the system, Ind. Eng. Chem. Res.,
51 (2012) 2531–2538.
- P. Braeutigam, M. Franke, R.J. Schneider, A. Lehmann,
A. Stolle, B. Ondruschka, Degradation of carbamazepine in
environmentally relevant concentrations in water by Hydrodynamic-
Acoustic-Cavitation (HAC), Water Res., 46 (2012)
2469–2477.
- P. Oleszczuk, B. Pan, B. Xing, Adsorption and desorption of
oxytetracycline and carbamazepine by multiwalled carbon
nanotubes, Environ. Sci. Technol., 43 (2009) 9167–9173.
- I. Vergili, Application of nanofiltration for the removal of
carbamazepine, diclofenac and ibuprofen from drinking water
sources, J. Environ. Manage., 127 (2013) 177–187.
- L. Hu, H.M. Martin, O. Arce-Bulted, M.N. Sugihara,
K.A. Keating, T.J. Strathmann, Oxidation of carbamazepine by
Mn(VII) and Fe(VI): reaction kinetics and mechanism, Environ.
Sci. Technol., 43 (2009) 509–515.
- A. Carabin, P. Drogui, D. Robert, Photocatalytic oxidation
of carbamazepine: application of an experimental design
methodology, Water Air Soil Pollut., 227 (2016) 122.
- A. Özcan, Y. Şahin, A.S. Koparal, M.A. Oturan, A comparative
study on the efficiency of electro-Fenton process in the removal
of propham from water, Appl. Catal., B, 89 (2009) 620–626.
- P.V. Nidheesh, Graphene-based materials supported advanced
oxidation processes for water and wastewater treatment:
a review, Environ. Sci. Pollut. Res., 24 (2017) 27047–27069.
- B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar,
Nanomaterials-based advanced oxidation processes for wastewater
treatment: a review, Chem. Eng. Process. Process Intensif.,
109 (2016) 178–189.
- P.V. Nidheesh, R. Gandhimathi, Trends in electro-Fenton
process for water and wastewater treatment: an overview,
Desalination, 299 (2012) 1–15.
- W.-P. Ting, M.-C. Lu, Y.-H. Huang, Kinetics of 2,6-dimethylaniline
degradation by electro-Fenton process, J. Hazard. Mater.,
161 (2009) 1484–1490.
- E. Bocos, O. Iglesias, M. Pazos, M. Ángeles Sanromán, Nickel
foam a suitable alternative to increase the generation of
Fenton’s reagents, Process Saf. Environ. Prot., 101 (2016) 34–44.
- J. Anotai, S. Singhadech, C.-C. Su, M.-C. Lu, Comparison of
o-toluidine degradation by Fenton, electro-Fenton and photoelectro-
Fenton processes, J. Hazard. Mater., 196 (2011) 395–401.
- P. V. Nidheesh, M. Zhou, M.A. Oturan, An overview on the
removal of synthetic dyes from water by electrochemical
advanced oxidation processes, Chemosphere, 197 (2018)
210–227.
- S. Vasudevan, M.A. Oturan, Electrochemistry: as cause and
cure in water pollution-an overview, Environ. Chem. Lett.,
12 (2014) 97–108.
- S. Karthikeyan, A. Titus, A. Gnanamani, A.B. Mandal,
G. Sekaran, Treatment of textile wastewater by homogeneous
and heterogeneous Fenton oxidation processes, Desalination,
281 (2011) 438–445.
- M. Muruganandham, R.P.S. Suri, M. Sillanpää, J.J. Wu,
B. Ahmmad, S. Balachandran, M. Swaminathan, Recent developments
in heterogeneous catalyzed environmental remediation
processes, J. Nanosci. Nanotechnol., 14 (2014) 1898–1910.
- P. V. Nidheesh, Heterogeneous Fenton catalysts for the
abatement of organic pollutants from aqueous solution: a
review, RSC Adv., 5 (2015) 40552–40577.
- G. Bonyadinejad, M. Sarafraz, M. Khosravi, A. Ebrahimi,
S.M. Taghavi-Shahri, R. Nateghi, S. Rastaghi, Electrochemical
degradation of the Acid Orange 10 dye on a Ti/PbO2 anode
assessed by response surface methodology, Korean J. Chem.
Eng., 33 (2016) 189–196.
- A.M. Polcaro, S. Palmas, F. Renoldi, M. Mascia, On the
performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical
degradation of 2-chlorophenolfor wastewater treatment, J. Appl.
Electrochem., 29 (1999) 147–151.
- C. Barrera-Díaz, P. Cañizares, F.J. Fernández, R. Natividad,
M.A. Rodrigo, Electrochemical advanced oxidation processes:
an overview of the current applications to actual industrial
effluents, J. Mex. Chem. Soc., 58 (2014) 256–275.
- B. Hou, H. Han, H. Zhuang, P. Xu, S. Jia, K. Li, A novel
integration of three-dimensional electro-Fenton and biological
activated carbon and its application in the advanced treatment
of biologically pretreated Lurgi coal gasification wastewater,
Bioresour. Technol., 196 (2015) 721–725.
- B. Hou, B. Ren, R. Deng, G. Zhu, Z. Wang, Z. Li, Threedimensional
electro-Fenton oxidation of N-heterocyclic
compounds with a novel catalytic particle electrode: high
activity, wide pH range and catalytic mechanism, RSC Adv.,
7 (2017) 15455–15462.
- Z. Ai, Z. Gao, L. Zhang, W. He, J.J. Yin, Core–shell structure
dependent reactivity of Fe@Fe2O3 nanowires on aerobic
degradation of 4-chlorophenol, Environ. Sci. Technol., 47 (2013)
5344–5352.
- J. Shi, Z. Ai, L. Zhang, Fe@Fe2O3 core-shell nanowires enhanced
Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles, Water
Res., 59 (2014) 145–153.
- W. Shen, F. Lin, X. Jiang, H. Li, Z. Ai, L. Zhang, Efficient removal
of bromate with core-shell Fe@F2O3 nanowires, Chem. Eng. J.,
308 (2017) 880–888.
- W. Liu, Z. Ai, M. Cao, L. Zhang, Ferrous ions promoted aerobic
simazine degradation with Fe@Fe2O3 core–shell nanowires,
Appl. Catal., B, 150–151 (2014) 1–11.
- L. Zhu, Z. Ai, W. Ho, L. Zhang, Core–shell Fe-Fe2O3
nanostructures as effective persulfate activator for degradation
of methyl orange, Sep. Purif. Technol., 108 (2013) 159–165.
- M. Panizza, C.A. Martinez-Huitle, Role of electrode materials
for the anodic oxidation of a real landfill leachate – comparison
between Ti–Ru–Sn ternary oxide, PbO2 and boron-doped
diamond anode, Chemosphere, 90 (2013) 1455–1460.
- Z. Ai, Y. Cheng, L. Zhang, J. Qiu, Efficient removal of Cr(VI)
from aqueous solution with Fe@Fe2O3 core−shell nanowires,
Environ. Sci. Technol., 42 (2008) 6955–6960.
- Z. Ai, L. Lu, J. Li, L. Zhang, J. Qiu, M. Wu, Fe@Fe2O3 Core-shell
nanowires as the iron reagent. 2. An efficient and reusable
sono-fenton system working at neutral pH, J. Phys. Chem. C,
111 (2007) 7430–7436.
- Z. Ai, L. Lu, J. Li, L. Zhang, J. Qiu, M. Wu, Fe@Fe2O3 Coreshell
nanowires as iron reagent. 1. Efficient degradation of
rhodamine B by a novel sono-Fenton process, J. Phys. Chem. C,
111 (2007) 4087–4093.
- G. Bonyadinejad, M. Khosravi, A. Ebrahimi, R. Nateghi,
S.M. Taghavi-Shahri, H. Mohammadi, Sonoelectrochemical
mineralization of perfluorooctanoic acid using Ti/PbO2 anode
assessed by response surface methodology, J. Environ. Health
Sci. Eng., 13 (2015) 77.
- S. Yousefinejad, F. Honarasa, H. Montaseri, Linear solvent
structure-polymer solubility and solvation energy relationships
to study conductive polymer/carbon nanotube composite
solutions, RSC Adv., 5 (2015) 42266–42275.
- E. Alfaya, O. Iglesias, M. Pazos, M.A. Sanromán, Environmental
application of an industrial waste as catalyst for the electro-Fenton-like treatment of organic pollutants, RSC Adv., 5 (2015)
14416–14424.
- H. Jiang, Y. Sun, J. Feng, J. Wang, Heterogeneous electro-Fenton
oxidation of azo dye methyl orange catalyzed by magnetic
Fe3O4 nanoparticles, Water Sci. Technol., 74 (2016) 1116–1126.
- Z. He, C. Gao, M. Qian, Y. Shi, J. Chen, S. Song, Electro-
Fenton process catalyzed by Fe3O4 magnetic nanoparticles
for degradation of C.I. Reactive Blue 19 in aqueous solution:
operating conditions, influence, and mechanism, Ind. Eng.
Chem. Res., 53 (2014) 3435–3447.
- Z. Ai, T. Mei, J. Liu, J. Li, F. Jia, L. Zhang, J. Qiu, Fe@Fe2O3 core
- shell nanowires as an iron reagent. 3. Their combination with
CNTs as an effective oxygen-fed gas diffusion electrode in
a neutral electro-Fenton system, J. Phys. Chem. C, 111 (2007)
14799–14803.
- H. Zhao, Y. Wang, Y. Wang, T. Cao, G. Zhao, Electro-Fenton
oxidation of pesticides with a novel Fe3O4@Fe2O3/activated
carbon aerogel cathode: High activity, wide pH range and
catalytic mechanism, Appl. Catal., B, 125 (2012) 120–127.
- M. Panizza, G. Cerisola, Electro-Fenton degradation of synthetic
dyes, Water Res., 43 (2009) 339–344.
- P.V. Nidheesh, R. Gandhimathi, S. Velmathi, N.S. Sanjini,
Magnetite as a heterogeneous electro Fenton catalyst for the
removal of Rhodamine B from aqueous solution, RSC Adv.,
4 (2014) 5698–5708.
- F. Yu, M. Zhou, X. Yu, Cost-effective electro-Fenton using
modified graphite felt that dramatically enhanced on H2O2
electro-generation without external aeration, Electrochim. Acta,
163 (2015) 182–189.
- M.S. Yahya, N. Beqqal, A. Guessous, M.R. Arhoutane, K. El
Kacemi, Degradation and mineralization of moxifloxacin
antibiotic in aqueous medium by electro-Fenton process:
kinetic assessment and oxidation products, Cogent Chem.,
144 (2017) 1–11.
- H. Pourzamani, Y. Hajizadeh, N. Mengelizadeh, Application of
three-dimensional electrofenton process using MWCNTs-Fe3O4
nanocomposite for removal of diclofenac, Process Saf. Environ.
Prot., 119 (2018) 271–284.
- T. Sruthi, R. Gandhimathi, S.T. Ramesh, P.V. Nidheesh,
Stabilized landfill leachate treatment using heterogeneous
Fenton and electro-Fenton processes, Chemosphere, 210 (2018)
38–43.
- C. García-Gómez, P. Drogui, F. Zaviska, B. Seyhi, P. Gortáres-Moroyoqui, G. Buelna, C. Neira-sáenz, M. Estrada-Alvarado,
R.G. Ulloa-Mercado, Experimental design methodology applied
to electrochemical oxidation of carbamazepine using Ti/PbO2
and Ti/BDD electrodes, J. Electroanal. Chem., 732 (2014) 1–10.
- C. Jiang, J. Zhang, Progress and prospect in electro-Fenton
process for wastewater treatment, J. Zhejiang Univ. Sci. A,
8 (2007) 1118–1125.
- Ö. Gökkuş, Y.Ş. Yıldız, Application of electro-Fenton process
for medical waste sterilization plant wastewater, Desal. Wat.
Treat., 57 (2016) 24934–24945.
- E. Bocos, M. Pazos, M.Á. Sanromán, Electro-Fenton treatment
of imidazolium-based ionic liquids: kinetics and degradation
pathways, RSC Adv., 6 (2016) 1958–1965.
- C. Zhang, M. Zhou, G. Ren, X. Yu, L. Ma, J. Yang, F. Yu,
Heterogeneous electro-Fenton using modified iron–carbon as
catalyst for 2,4-dichlorophenol degradation: influence factors,
mechanism and degradation pathway, Water Res., 70 (2015)
414–424.
- O. Iglesias, J. Gómez, M. Pazos, M.Á. Sanromán, Electro-Fenton
oxidation of imidacloprid by Fe alginate gel beads, Appl. Catal.,
B, 144 (2014) 416–424.
- C.-T. Wang, W.-L. Chou, M.-H. Chung, Y.-M. Kuo, COD removal
from real dyeing wastewater by electro-Fenton technology
using an activated carbon fiber cathode, Desalination, 253 (2010)
129–134.
- M. Zhou, Q. Yu, L. Lei, G. Barton, Electro-Fenton method
for the removal of methyl red in an efficient electrochemical
system, Sep. Purif. Technol., 57 (2007) 380–387.
- F. Iranpour, H. Pourzamani, N. Mengelizadeh, P. Bahrami,
H. Mohammadi, Application of response surface methodology
for optimization of reactive black 5 removal by three
dimensional electro-Fenton process, J. Environ. Chem. Eng.,
6 (2018) 3418–3435.
- H. Mohammadi, B. Bina, A. Ebrahimi, A novel three-dimensional
electro-Fenton system and its application for degradation of
anti-inflammatory pharmaceuticals: modeling and degradation
pathways, Process Saf. Environ. Prot., 117 (2018) 200–213.
- Y. Wang, Y. Liu, T. Liu, S. Song, X. Gui, H. Liu, P. Tsiakaras,
Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode, Appl. Catal., B, 156–157 (2014) 1–7.
- X. Ding, S. Wang, W. Shen, Y. Mu, L. Wang, H. Chen, L. Zhang,
Fe@Fe2O3 promoted electrochemical mineralization of atrazine
via a triazinon ring opening mechanism, Water Res., 112 (2017)
9–18.
- M. Malakootian, A. Moridi, Efficiency of electro-Fenton process
in removing Acid Red 18 dye from aqueous solutions, Process
Saf. Environ. Prot., 111 (2017) 138–147.
- H. Lei, H. Li, Z. Li, Z. Li, K. Chen, X. Zhang, H. Wang, Electro-Fenton degradation of cationic red X-GRL using an activated
carbon fiber cathode, Process Saf. Environ. Prot., 88 (2010)
431–438.
- B. Hou, H. Han, S. Jia, H. Zhuang, P. Xu, D. Wang, Heterogeneous
electro-Fenton oxidation of catechol catalyzed by nano-Fe3O4:
kinetics with the Fermi’s equation, J. Taiwan Inst. Chem. Eng.,
56 (2015) 138–147.
- D. Gümüş, F. Akbal, Comparison of Fenton and electro-Fenton
processes for oxidation of phenol, Process Saf. Environ. Prot.,
103 (2016) 252–258.
- I. Ouiriemmi, A. Karrab, N. Oturan, M. Pazos, E. Rozales, A.
Gadri, M.Á. Sanromán, S. Ammar, M.A. Oturan, Heterogeneous
electro-Fenton using natural pyrite as solid catalyst for oxidative
degradation of vanillic acid, J. Electroanal. Chem., 797 (2017)
69–77.
- S. Sathian, G. Radha, V. Shanmugapriya, M. Rajasimman,
C. Karthikeyan, Optimization and kinetic studies on treatment
of textile dye wastewater using Pleurotus floridanus, Appl.
Water Sci., 3 (2013) 41–48.
- W. Wang, Q. Wu, N. Huang, T. Wang, H. Hu, Synergistic effect
between UV and chlorine (UV/chlorine) on the degradation of
carbamazepine: Influence factors and radical species, Water
Res., 98 (2016) 190–198.