References
- M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis,
B.J. Mariñas, A.M. Mayes, Science and technology for water
purification in the coming decades, Nature, 452 (2008) 301–310.
- M. Elimelech, W.A. Phillip, The future of sweater desalination:
energy, technology and the environment, Science, 333 (2011)
712–717.
- A.D. Khawaji, I.K. Kutubkhanah, J.-M. Wie, Advances in
seawater desalination technologies, Desalination, 221 (2008)
47–69.
- S. Daer, J. Kharraz, A. Giwa, S.W. Hasan, Recent applications
of nanomaterials in water desalination: a critical review and
future opportunities, Desalination, 367 (2015) 37–48.
- T. Humplik, J. Lee, S.C.O’Hern, B.A. Fellman, M.A. Baig,
S.F. Hassan, M.A. Atieh, F. Rahman, T. Laoui, R. Karnik, E.N.
Wang, Nanostructured materials for water desalination, Nanotechnology,
22 (2011) 292001–1–20.
- F. Perreault, A.F. de Faria, M. Elimelech, Environmental
applications of graphene-based nanomaterials, Chem. Soc. Rev.,
44 (2015) 5861–5896.
- D. Chohen-Tanugi, J.C. Grossman, Mechanical strength of
nanoporous graphene as a desalination membrane, Nano Lett.,
14 (2014) 6171–6178.
- L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin,
Reverse osmosis desalination: water sources, technology, and
today’s challenges, Water Res., 43 (2009) 2317–2348.
- S. Porada, R. Zhao, A. Van der Wal, V. Presser, P. Biesheuvel,
Review on the science and technology of water desalination by
capacitive deionization, Prog. Mater Sci., 58 (2013) 1388–1442.
- M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser,
Water desalination via capacitive deionization: what is it and
what can we expect from it?, Energy Environ. Sci., 8 (2015)
2296–2319.
- X. Gao, S. Porada, A. Omosebi, K.-L. Liu, P.M. Biesheuvel,
J. Landon, Complementary surface charge for enhanced
capacitive deionization, Water Res., 92 (2016) 275–282.
- M. Qin, A. Deshmukh, R. Epztein, S.K. Patel, O.M. Owoseni,
W.S. Walker, M. Elimelech, Comparison of energy consumption
in desalination by capacitive deionization and reverse osmosis,
Desalination, 455 (2019) 100–114.
- M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization
as an electrochemical means of saving energy and delivering
clean water. Comparison to present desalination practices: will
it compete?, Electrochim. Acta, 55 (2010) 3845–3856.
- B. Jia, L. Zou, Wettability and its influence on graphene
nansoheets as electrode material for capacitive deionization,
Chem. Phys. Lett., 548 (2012) 23–28.
- S. Yamaguchi, Nanoionics-Present and future prospects, Sci.
Technol. Adv. Mater., 8 (2007) 503–503.
- A.G. El-Deen, R.M. Boom, H.Y. Kim, H. Duan, M.B. Chan-Park,
J.-H. Choi, Flexible 3D nanoporous graphene for desalination
and bio-decontamination of brackish water via asymmetric
capacitive deionization, ACS Appl. Mater. Interfaces, 8 (2016)
25313–25325.
- V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chen, J. Zhang, A review
of graphene and graphene oxide sponge: material synthesis and
applications to energy and the environment, Energy Environ.
Sci., 7 (2014) 1564–1596.
- C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi,
D. DePaoli, S. Dai, Mesoporous carbon for capacitive deionization
of saline water, Environ. Sci. Technol., 45 (2011) 10243–10249.
- S. Porada, L. Weinstein, R. Dash, A. Van der Wal, M. Bryjak,
Y. Gogotsi, P.M. Biesheuvel, Water desalination using capacitive
deionization with microporous carbon electrodes, ACS Appl.
Mater. Interfaces, 4 (2012) 1194–1199.
- X. Xu, Z. Sun, D.H.C. Chua, L. Pan, Novel nitrogen doped
graphene sponge with ultrahigh capacitive deionization performance,
Sci. Rep., 5 (2015) 11225.
- P. Xu, J. Yang, K. Wang, Z. Zhou, P. Shen, Porous graphene:
properties, preparation and potential applications, Chin. Sci.
Bull., 57 (2012) 2948–2955.
- S.P. Koenig, L. Wang, J. Pellegrino, J.S. Bunch, Selective molecular
sieving through porous graphene, Nat. Nanotechnol., 7 (2012)
728–732.
- S. Gupta, R. Meek, B. Evans, N. Dimakis, Graphene-based
“hybrid” aerogels with carbon nanotubes: Mesoporous network–
functionality promoted defect density and electrochemical
activity correlations, J. Appl. Phys., 124 (2018) 124304–1–15.
- Water quality Determination of electrical conductivity, International
standard ISO 7888 ; EPA method number 310.1, 1985.
- J. Xu, Y. Lin, J.W. Connell, L. Dai, Nitrogen‐doped holey
graphene as an anode for lithium‐ion batteries with high
volumetric energy density and long cycle life, Small., 11 (2015)
6179–6185.
- S. Gupta, A. Saxena, Nanocarbon materials: probing the curvature
and topology effects using phonon spectra, J. Raman
Spectrosc., 40 (2009) 1127–1137.
- M.S. Dresselhaus, A. Jorio, R. Saito, Characterizing Graphene,
Graphite, and carbon nanotubes by Raman spectroscopy,
Annu. Rev. Condens. Matter Phys., 1 (2010) 89–108.
- S. Gupta, E. Heintzman, J. Jasinski, Multiphonon Raman
spectroscopy properties and Raman mapping of 2D van der
Waals solids: graphene and beyond, J. Raman Spectrosc.,
46 (2015) 217–230.
- F. Tunistra, J.L. Koenig, Raman spectrum of graphite, J. Chem.
Phys., 53 (1970) 1126–1130.
- A. Jorio, M.M. Lucchese, F. Stavale, E.H.M. Ferreira, M.V.O.
Moutinho, R.B. Capaz, C.A. Achete, Raman study of ioninduced
defects in N-layer graphene, J. Phys.: Condens. Matter,
22 (2010) 334204–1–5.
- L.G. Conçado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete,
R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala,
A.C. Ferrari, Quantifying defects in graphene via Raman
spectroscopy at different excitation energies, Nano Lett.,
11 (2011) 3190–3196.
- A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha,
U.V. Waghmare, K. Novoselov, H.R. Krishnamurthy,
A.K. Geim, A.C. Ferrari, A.K. Sood, Monitoring dopants by
Raman scattering in an electrochemically top-gated graphene
transistor, Nat. Nanotechnol., 3 (2008) 210–215.
- E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals
and Technological Applications; Kluwer Academic/Plenum, New York, USA, 1999.
- S. Gupta, T. Smith, A. Banaszak, J. Boeckl, Graphene quantum
dots electrochemistry and sensitive electrocatalytic glucose
sensor development, Nanomaterials, 7 (2017) 301–1–20.
- A.S. Yasin, M. Obaid, I.M.A. Mohamed, A. Yousef, N.A.M.
Barakat, ZrO2 nanofibers/activated carbon composite as a
novel and effective electrode material for the enhancement
of capacitive deionization performance, RSC Adv., 7 (2017)
4616–4626.
- H. Li, L. Zou, L. Pan, Z. Sun, Novel graphene-like electrodes
for capacitive deionization, Environ. Sci. technol., 44 (2010)
8692–8697.
- N.L. Ritzert, J. Rodriguez-Lopex, C. Tan, H.D. Abruňa,
Kinetics of interfacial electron transfer at single-layer graphene
electrodes in aqueous and non-aqueous solutions, Langmuir,
29 (2013) 1683–1694.
- L. Heller, J. Kong, K.A. Williams, C. Dekker, S.G. Lemay,
Electrochemistry at single-walled carbon nanotubes: the role
of band structure and quantum capacitance, J. Am. Chem.
Soc., 128 (2006) 7353–7359.
- S. Gupta, N. Dimakis, Computational predictions of electronic
properties of graphene with defects, adsorbed transition metaloxides
and water using density functional theory, Appl. Surf.
Sci., 465 (2019) 760–772.