References

  1. G.-R. Xu, J.-N. Wang, C.-J. Li, Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations, Desalination, 328 (2013) 83–100.
  2. J. Xu, Z. Wang, L. Yu, J. Wang, S. Wang, A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties, J. Membr. Sci., 435 (2013) 80–91.
  3. C.W. McFall, A. Bartman, P.D. Christofides, Y. Cohen, Control and monitoring of a high recovery reverse osmosis desalination process, Ind. Eng. Chem. Res., 47 (2008) 6698–6710.
  4. C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination, 216 (2007) 1–76.
  5. D. Dochain, State and parameter estimation in chemical and biochemical processes: a tutorial, J. Process Control, 13 (2003) 801–818.
  6. J. Prakash, R.B. Gopaluni, S.C. Patwardhan, S. Narasimhan, S.L. Shah, Nonlinear Bayesian State Estimation: Review and Recent Trends, 2011 International Symposium on Advanced Control of Industrial Processes (ADCONIP), 2011, pp. 450–455.
  7. J. Mohd Ali, N. Ha Hoang, M.A. Hussain, D. Dochain, Review and classification of recent observers applied in chemical process systems, Comput. Chem. Eng., 76 (2015) 27–41.
  8. G. Welch, G. Bishop, An Introduction to the Kalman Filter, University of North Carolina at Chapel Hill, 1995.
  9. F. Bagui, M.A. Abdelghani-Idrissi, H. Chafouk, Heat exchanger Kalman filtering with process dynamic acknowledgement, Comput. Chem. Eng., 28 (2004) 1465–1473.
  10. W. Liu, An extended Kalman filter and neural network cascade fault diagnosis strategy for the glutamic acid fermentation process, Artif. Intell. Eng., 13 (1999) 131–140.
  11. J. Wang, L. Zhao, T. Yu, On-line estimation in fed-batch fermentation process using state space model and unscented Kalman filter, Chin. J. Chem. Eng., 18 (2010) 258–264.
  12. L.A. Aguirre, M.F.S. Pereira, A modified observer scheme for fault detection and isolation applied to a poorly observed process with integration, J. Process Control, 8 (1998) 47–56.
  13. Z. Wang, H. Shang, Kalman filter based fault detection for two-dimensional systems, J. Process Control, 28 (2015) 83–94.
  14. J.H. Lee, N.L. Ricker, Extended Kalman Filter Based Nonlinear Model Predictive Control, 1993 American Control Conference, 1993, pp. 1895–1899.
  15. J.H. Lee, N.L. Ricker, Extended Kalman filter based nonlinear model predictive control, Ind. Eng. Chem. Res., 33 (1994) 1530–1541.
  16. S.-M. Ahn, M.-J. Park, H.-K. Rhee, Extended Kalman filter-based nonlinear model predictive control for a continuous MMA polymerization reactor, Ind. Eng. Chem. Res., 38 (1999) 3942–3949.
  17. D.Y. Kim, M.H. Lee, S. Lee, J.H. Kim, D.R. Yang, Online estimation of fouling development for SWRO system using real data, Desalination, 247 (2009) 200–209.
  18. J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, J. Membr. Sci., 107 (1995) 1–21.
  19. K.L. Chen, L. Song, S.L. Ong, W.J. Ng, The development of membrane fouling in full-scale RO processes, J. Membr. Sci., 232 (2004) 63–72.
  20. E.A. Wan, R.V.D. Merwe, The Unscented Kalman Filter for Nonlinear Estimation, Proc. IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373), 2000, pp. 153–158.
  21. Y.G. Lee, Y.S. Lee, D.Y. Kim, M. Park, D.R. Yang, J.H. Kim, A fouling model for simulating long-term performance of SWRO desalination process, J. Membr. Sci., 401–402 (2012) 282–291.
  22. M.A. Sanza, V. Bonnélyea, G. Cremerb, Fujairah reverse osmosis plant: 2 years of operation, Desalination, 203 (2007) 91–99.