References

  1. P. Spezzano, Distribution of pre- and post-Chernobyl radiocaesium with particle size fractions of soils, J. Environ. Radioact., 83 (2005) 117–127.
  2. K.O. Buesseler, S.R. Jayne, N.S. Fisher, I.I. Rypina, H. Baumann, Z. Baumann, C.F. Breier, E.M. Douglass, J. George, A.M. Macdonald, H. Miyamoto, J. Nishikawa, S.M. Pike, S. Yoshida, Fukushima-derived radionuclides in the ocean and biota off Japan, Proc. Natl. Acad. Sci. U.S.A., 109 (2012) 5984–5988.
  3. T. Sangvanich, V. Sukwarotwat, R.J. Wiacek, R.M. Grudzien, G.E. Fryxell, R.S. Addleman, C. Timchalk, W. Yantasee, Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica, J. Hazard. Mater., 182 (2010) 225–231.
  4. L.V. Tendeloo, B. de Blochouse, D. Dom, J. Vancluysen, R. Snellings, J.A. Martens, C.E.A. Kirschhock, A. Maes, E. Breynaert, Cation exchange properties of zeolites in hyper alkaline aqueous media, Environ. Sci. Technol., 49 (2015) 1729–1737.
  5. E.H. Borai, R. Harjula, L. Malinen, A. Paajanen, Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals, J. Hazard. Mater., 172 (2009) 416–422.
  6. H. Mimura, H. Ohta, K. Akiba, Y. Onodera, Uptake behavior of americium on alginic acid and alginate polymer gels, J. Radioanal. Nucl. Chem., 247 (2001) 33–38.
  7. M.F. Attallah, E.H. Borai, Risto, Hariula, Airi, Paajanen, Mikko, Karesoja, Selective removal of cesium using zirconium (IV) tungstate as an inorganic ion exchanger from aqueous solution, Mater. Eng. B, 1 (2011) 736–746.
  8. Z. Jia, X. Cheng, Y. Guo, L. Tu, In-situ preparation of iron(III) hexacyanoferrate nano-layer on polyacrylonitrile membranes for cesium adsorption from aqueous solutions, Chem. Eng. J., 325 (2017) 513–520.
  9. X. Zhang, S. Wang, L. Xu, L. Feng, Y. Ji, L. Tao, S. Li, Y. Wei, Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging, Nanoscale, 4 (2012) 5581–5584.
  10. Z.L. Rao, S. Liu, R. Wu, G. Wang, Z. Sun, L. Bai, W. Wang, H. Chen, H. Yang, D. Wei, Y. Niu, Fabrication of dual network selfhealing alginate/guar gum hydrogels based on polydopaminetype microcapsules from mesoporous silica nanoparticles, Int. J. Biol. Macromol., 129 (2019) 916–926.
  11. S. Liu, Z. Rao, R. Wu, Z. Sun, Z. Yuan, L. Bai, W. Wang, H. Yang, H. Chen, Fabrication of microcapsules by the combination of biomass porous carbon and polydopamine for dual self-healing hydrogels, J. Agric. Food. Chem., 67 (2019) 1061–1071.
  12. Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields, Chem. Rev., 114 (2014) 5057–5115.
  13. K. Sun, Y. Xie, D. Ye, Y. Zhao, Y. Cui, F. Long, W. Zhang, X. Jiang, Mussel-inspired anchoring for patterning cells using polydopamine, Langmuir, 28 (2012) 2131–2136.
  14. Z. Jia, M. Jiang, G. Wu, Amino-MIL-53(Al) sandwich-structure membranes for adsorption of p-nitrophenol from aqueous solutions, Chem. Eng. J., 307 (2017) 283–290.
  15. X. Du, L. Li, J. Li, C. Yang, N. Frenkel, A. Welle, S. Heissler, A. Nefedov, M. Grunze, P.A. Levkin, UV‐triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning, Adv. Mater., 26 (2014) 8029–8033.
  16. L. Yang, J. Kong, D. Zhou, J.M. Ang, S.L. Phua, W.A. Yee, H. Liu, Y. Huang, X. Lu, Transition-metal-ion-mediated polymerization of dopamine: mussel-inspired approach for the facile synthesis of robust transition-metal nanoparticlegraphene hybrids, Chemistry, 20 (2014) 7776–7783.
  17. Q. Fang, B. Chen, Adsorption of perchlorate onto raw and oxidized carbon nanotubes in aqueous solution, Carbon, 50 (2012) 2209–2219.
  18. S.K. Samanta, B.M. Misra, Ion exchange selectivity of a resorcinol-formaldehyde polycondensate resin for cesium in relation to other alkali metal ions, Solvent Extr. Ion Exch., 13 (1995) 575–589.
  19. A. Favre-Réguillon, B. Dunjic, M. Lemaire, R. Chomel, Synthesis and evaluation of resorcinol-based ion-exchange resins for the selective removal of cesium, Solvent Extr. Ion Exch., 19 (2001) 181–191.
  20. Z. Jia, G. Sun, Preparation of prussian blue nanoparticles with single precursor, Colloids Surf., A, 302 (2007) 326–329.
  21. B. Haghighi, S. Varma, F.M. Alizadeh Sh, Y. Yigzaw, L. Gorton, Prussian blue modified glassy carbon electrodes—study on operational stability and its application as a sucrose biosensor, Talanta, 64 (2004) 3–12.
  22. F. Herren, P. Fischer, A. Ludi, W. Haelg, Neutron diffraction study of Prussian Blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order, Cheminform, 19 (1980) 956–959.
  23. A.N. Romanov, F.V. Grigoriev, V.B. Sulimov, Estimation of Bi+ monocation crystal ionic radius by quantum chemical simulation, Comput. Theor. Chem., 1017 (2013) 159–161.
  24. E.R. Nightingale, Phenomenological theory of ion solvation. Effective radii of hydrated ions, Biochim. Biophys. Acta, 63 (1958) 566–567.
  25. Y. Marcus, Are ionic stokes radii of any use?, J. Solution Chem., 41 (2012) 2082–2090.
  26. S.S. Madaeni, E. Salehi, A new adsorption–transport and porosity combined model for passage of cations through nanofiltration membrane, J. Membr. Sci., 333 (2009) 100–109.