References
- P. Spezzano, Distribution of pre- and post-Chernobyl radiocaesium
with particle size fractions of soils, J. Environ. Radioact.,
83 (2005) 117–127.
- K.O. Buesseler, S.R. Jayne, N.S. Fisher, I.I. Rypina, H. Baumann,
Z. Baumann, C.F. Breier, E.M. Douglass, J. George,
A.M. Macdonald, H. Miyamoto, J. Nishikawa, S.M. Pike, S. Yoshida,
Fukushima-derived radionuclides in the ocean and biota
off Japan, Proc. Natl. Acad. Sci. U.S.A., 109 (2012) 5984–5988.
- T. Sangvanich, V. Sukwarotwat, R.J. Wiacek, R.M. Grudzien,
G.E. Fryxell, R.S. Addleman, C. Timchalk, W. Yantasee, Selective
capture of cesium and thallium from natural waters and
simulated wastes with copper ferrocyanide functionalized
mesoporous silica, J. Hazard. Mater., 182 (2010) 225–231.
- L.V. Tendeloo, B. de Blochouse, D. Dom, J. Vancluysen,
R. Snellings, J.A. Martens, C.E.A. Kirschhock, A. Maes, E. Breynaert,
Cation exchange properties of zeolites in hyper alkaline
aqueous media, Environ. Sci. Technol., 49 (2015) 1729–1737.
- E.H. Borai, R. Harjula, L. Malinen, A. Paajanen, Efficient removal
of cesium from low-level radioactive liquid waste using natural
and impregnated zeolite minerals, J. Hazard. Mater., 172 (2009)
416–422.
- H. Mimura, H. Ohta, K. Akiba, Y. Onodera, Uptake behavior
of americium on alginic acid and alginate polymer gels,
J. Radioanal. Nucl. Chem., 247 (2001) 33–38.
- M.F. Attallah, E.H. Borai, Risto, Hariula, Airi, Paajanen, Mikko,
Karesoja, Selective removal of cesium using zirconium (IV)
tungstate as an inorganic ion exchanger from aqueous solution,
Mater. Eng. B, 1 (2011) 736–746.
- Z. Jia, X. Cheng, Y. Guo, L. Tu, In-situ preparation of iron(III)
hexacyanoferrate nano-layer on polyacrylonitrile membranes
for cesium adsorption from aqueous solutions, Chem. Eng. J.,
325 (2017) 513–520.
- X. Zhang, S. Wang, L. Xu, L. Feng, Y. Ji, L. Tao, S. Li,
Y. Wei, Biocompatible polydopamine fluorescent organic
nanoparticles: facile preparation and cell imaging, Nanoscale,
4 (2012) 5581–5584.
- Z.L. Rao, S. Liu, R. Wu, G. Wang, Z. Sun, L. Bai, W. Wang, H.
Chen, H. Yang, D. Wei, Y. Niu, Fabrication of dual network selfhealing
alginate/guar gum hydrogels based on polydopaminetype
microcapsules from mesoporous silica nanoparticles, Int. J.
Biol. Macromol., 129 (2019) 916–926.
- S. Liu, Z. Rao, R. Wu, Z. Sun, Z. Yuan, L. Bai, W. Wang, H. Yang,
H. Chen, Fabrication of microcapsules by the combination of
biomass porous carbon and polydopamine for dual self-healing
hydrogels, J. Agric. Food. Chem., 67 (2019) 1061–1071.
- Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials:
synthesis and promising applications in energy, environmental,
and biomedical fields, Chem. Rev., 114 (2014) 5057–5115.
- K. Sun, Y. Xie, D. Ye, Y. Zhao, Y. Cui, F. Long, W. Zhang,
X. Jiang, Mussel-inspired anchoring for patterning cells using
polydopamine, Langmuir, 28 (2012) 2131–2136.
- Z. Jia, M. Jiang, G. Wu, Amino-MIL-53(Al) sandwich-structure
membranes for adsorption of p-nitrophenol from aqueous
solutions, Chem. Eng. J., 307 (2017) 283–290.
- X. Du, L. Li, J. Li, C. Yang, N. Frenkel, A. Welle, S. Heissler,
A. Nefedov, M. Grunze, P.A. Levkin, UV‐triggered dopamine
polymerization: control of polymerization, surface coating,
and photopatterning, Adv. Mater., 26 (2014) 8029–8033.
- L. Yang, J. Kong, D. Zhou, J.M. Ang, S.L. Phua, W.A. Yee,
H. Liu, Y. Huang, X. Lu, Transition-metal-ion-mediated polymerization
of dopamine: mussel-inspired approach for the
facile synthesis of robust transition-metal nanoparticlegraphene
hybrids, Chemistry, 20 (2014) 7776–7783.
- Q. Fang, B. Chen, Adsorption of perchlorate onto raw and
oxidized carbon nanotubes in aqueous solution, Carbon,
50 (2012) 2209–2219.
- S.K. Samanta, B.M. Misra, Ion exchange selectivity of a
resorcinol-formaldehyde polycondensate resin for cesium
in relation to other alkali metal ions, Solvent Extr. Ion Exch.,
13 (1995) 575–589.
- A. Favre-Réguillon, B. Dunjic, M. Lemaire, R. Chomel, Synthesis
and evaluation of resorcinol-based ion-exchange resins for the
selective removal of cesium, Solvent Extr. Ion Exch., 19 (2001)
181–191.
- Z. Jia, G. Sun, Preparation of prussian blue nanoparticles
with single precursor, Colloids Surf., A, 302 (2007) 326–329.
- B. Haghighi, S. Varma, F.M. Alizadeh Sh, Y. Yigzaw, L. Gorton,
Prussian blue modified glassy carbon electrodes—study on
operational stability and its application as a sucrose biosensor,
Talanta, 64 (2004) 3–12.
- F. Herren, P. Fischer, A. Ludi, W. Haelg, Neutron diffraction
study of Prussian Blue, Fe4[Fe(CN)6]3.xH2O. Location of water
molecules and long-range magnetic order, Cheminform, 19 (1980)
956–959.
- A.N. Romanov, F.V. Grigoriev, V.B. Sulimov, Estimation of
Bi+ monocation crystal ionic radius by quantum chemical
simulation, Comput. Theor. Chem., 1017 (2013) 159–161.
- E.R. Nightingale, Phenomenological theory of ion solvation.
Effective radii of hydrated ions, Biochim. Biophys. Acta,
63 (1958) 566–567.
- Y. Marcus, Are ionic stokes radii of any use?, J. Solution Chem.,
41 (2012) 2082–2090.
- S.S. Madaeni, E. Salehi, A new adsorption–transport and
porosity combined model for passage of cations through
nanofiltration membrane, J. Membr. Sci., 333 (2009) 100–109.