References
- K.A. Hudson-Edwards, B. Dold, Mine waste characterization,
management and remediation, Minerals, 5 (2015) 82–85.
- K. Lapakko, Metal mine rock and waste characterization tools:
an overview, Min. Miner. Sustainable Dev., 67 (2002) 1–30.
- D.B. Johnson, K.B. Hallberg, Acid mine drainage remediation
options: a review, Sci. Total Environ., 338 (2005) 3–14.
- J. Murray, A. Kirschbaum, B. Dold, E.M. Guimaraes, E.P. Miner,
Jarosite versus soluble iron-sulfate formation and their role
in acid mine drainage formation at the Pan de Azúcar mine
tailings (Zn-Pb-Ag), NW Argentina, Minerals, 4 (2014) 477–502.
- N. Noosai, V. Vijayan, K. Kengskool, Model application for
acid mine drainage treatment processes, Int. J. Energy Environ.,
5 (2014) 693–700.
- T. Seadira, J. Baloyi, M. Raphulu, R. Moutloalo, A. Ochieng,
Acid Mine Drainage Treatment Using Constructed Wetland,
Presented at the International Conference on Chemical,
Integrated Waste Management & Environmental Engineering
(ICCIWEE’2014), Johannesburg, April 15–16, 2014.
- A. Esmaeili, Removal of Copper, Zinc and Nickel from Acid
Mine Drainage by Natural Clay Minerals: Batch and Column
Study, Presented at the 14th International Conference on
Environmental Science and Technology, Greece, September 3–5,
2015.
- J. Obreque-Contreras, D. Pérez-Flores, P. Gutiérrez, P. Chávez-Crooker, Acid mine drainage in Chile: an opportunity to apply
bioremediation technology, Hydrology: Curr. Res., 6 (2015) 1–8.
- E.J. Clyde, P. Champagne, H.E. Jamieson, C. Gorman, J. Sourial,
The use of a passive treatment system for the mitigation of acid
mine drainage at the Williams Brothers mine (California): pilotscale
study, J. Cleaner Prod., 130 (2016) 116–125.
- Z.A. Diloreto, Biogeochemical Investigations of a Full Scale
Mussel Shell Bioreactor for the Treatment of Acid Mine
Drainage (AMD), The Stockton Mine, New Zealand, University
of Windso, 2016.
- O.N. Tiwari, M. Pradhan, T. Nandy, Treatment of mininginfluenced
water at Malanjkhand copper mine, Desal. Wat.
Treat., 57 (2016) 24755–24764.
- B.G. Lottermoser, Mine Wastes: Characterization, Treatment and
Environmental Impacts, Springer-Verlag, Berlin Heidelberg,
New York, 2010.
- C. Costello, Acid Mine Drainage: Innovative Treatment
Technologies, Technology Innovation Office, Washington,
D.C., 2003. Available at: https://brownfieldstsc.org/pdfs/amdinnovativetrttech_03.pdf.
- R.A. Chirakkara, K.R. Reddy, Synergistic Effects of Organic and
Metal Contaminants on Phytoremediation, Geo-Congress 2014
Technical Papers, GSP, 234 (2014) 1703–1712.
- V. Hooda, Phytoremediation of toxic metals from soil and
waste water, J. Environ. Biol., 28 (2007) 367–376.
- P. Ziarati, M. Zolfaghari, B. Azadi, The effect of tea residue in
promoting phytoremediation of Lavandula angustifoli mill, Int. J.
Plant Anim. Environ. Sci., 4 (2014) 479–486.
- R.C. Pantola, A. Alam, Potential of Brassicaceae Burnett (Mustard
family; Angiosperms) in phytoremediation of heavy metals,
Int. J. Sci. Res. Environ. Sci., 2 (2014) 120–138.
- M.H. Saier, J.T. Trevors, Phytoremediation, Water Air Soil Pollut.,
205 (2010) 61–63.
- J.L. Couselo, E. Corredoira, A.M. Vieitez, A. Ballester, Plant Cell
Culture Protocols, V.M. Loyola-Vargas, N. Ochoa-Alejo, Eds.,
Plant Cell Culture of Fast-Growing Trees for Phytoremediation
Research Protocols, Methods in Molecular Biology, Humana
Press Inc., New York, 2012, pp. 247–263.
- A.R. Keshtkar, M.R. Ahmadi, H.R. Naseri, H. Atashi, H. Hamidifar,
S.M. Razavi, A. Yazdanpanah, M. Karimpour Reihan,
N. Moazami, Application of a vetiver system for unconventional
water treatment, Desal. Wat. Treat., 57 (2016) 25474–25483.
- M. Sitarska, T. Traczewska, V. Filyarovskaya, Removal of
mercury (II) from the aquatic environment by phytoremediation,
Desal. Wat. Treat., 57 (2016) 1515–1524.
- S.-F. Cheng, C.-Y. Huang, K.-L. Chen, S.-C. Lin, Y.-C. Lin,
Phytoattenuation of lead-contaminated agricultural land using
Miscanthus floridulus—an in situ case study, Desal. Wat. Treat.,
57 (2016) 7773–7779.
- S. Adiloglu, M.T. Sağlam, A. Adiloğlu, A. Süme, Phytoremediation
of nickel (Ni) from agricultural soils using canola
(Brassica napus L.), Desal. Wat. Treat., 57 (2016) 2383–2388.
- N. Khellaf, M. Zerdaoui, Phytoaccumulation of zinc using the
duckweed Lemna gibba L.: effect of temperature, pH and metal
source, Desal. Wat. Treat., 51 (2013) 5755–5760.
- N. Rungruang, S. Babel, P. Parkpian, Screening of potential
hyperaccumulator for cadmium from contaminated soil, Desal.
Wat. Treat., 32 (2011) 19–26.
- A.K. Hegazy, H.F. Kabiel, M. Fawzy, Duckweed as heavy
metal accumulator and pollution indicator in industrial wastewater
ponds, Desal. Wat. Treat., 12 (2009) 400–406.
- N.I. Ismail, S.R.S. Abdullah, M. Idris, Assessment of Heavy
Metals in Water, Sediment and Plants in Tasik Chini, Presented
at the 2nd International Conference of Chemical Engineering
and Industrial Biotechnology, Pahang, Malaysia, August 28–29,
2013.
- B.V. Tangahu, S.R.S. Abdullah, H. Basri, M. Idris, N. Anuar,
M. Mukhlisin, Phytotoxicity of wastewater containing
lead (Pb) effects Scirpus grossus, Int. J. Phytorem., 15 (2013)
814–826.
- K.B. Jinadasa, N. Tanaka, S. Sasikala, D.R. Werellagama,
M.I. Mowjood, W.J. Ng, Impact of harvesting on constructed
wetlands performance - a comparison between Scirpus grossus and Typha angustifolia, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 43 (2008) 671–678.
- O.H. Jehawi, S.R.S. Abdullah, M. Idris, N. Anuar, H.A. Hasan,
A.N.H. Sbani, N.I. Ismail, A reed bed system for the treatment
of domestic wastewater and micropollutants, Aust. J. Basic
Appl. Sci., 8 (2014).280–283.
- I.A. Al-baldawi, S.R.S. Abdullah, N. Anuar, F. Suja, M. Idris,
A phytotoxicity test of bulrush (Scirpus grossus) grown with
diesel contamination in a free-flow reed bed system, J. Hazard.
Mater., 252–253 (2013) 64–69.
- N.I. Ismail, S.R.S. Abdullah, M. Idris, Preliminary Test of
Mining Wastewater Containing Iron (III) and Aluminium (III)
on Scirpus grossus in Phytoremediation Process, Presented at
the International Integrated Engineering Summit, Batu Pahat,
Malaysia, December 1–4, 2014.
- H.S. Titah, S.R.S. Abdullah, M. Idris, N. Anuar, H. Basri,
M. Mukhlisin, Phytotoxicity and uptake of arsenic by Ludwigia
octovalvis in a pilot reed bed system, Environ. Eng. Sci., 31 (2014)
71–79.
- G. Patil, Composite Sampling, In Encyclopedia of Environmetrics,
John Wiley & Sons, New York, 2006.
- N.K. Moustakas, K.A. Akoumianakis, H.C. Passam, Patterns
of dry biomass accumulation and nutrient uptake by okra
(Abelmoschus esculentus (L.) Moench.) under different rates of
nitrogen application, Aust. J. Crop Sci., 5 (2011) 993–1000.
- J. Coombs, D.O. Hall, J.M. Long, O. Scurlock, Techniques in
Bioproductivity and Photosynthesis, Pergamon Press, Oxford,
England, UK, 1985.
- Z. Zhang, Z. Rengel, K. Meney, Polynuclear aromatic hydrocarbons
(PAHs) differentially influence growth of various
emergent wetland species, J. Hazard. Mater., 182 (2010) 689–695.
- A.F. Holleman, E. Willberg, Inorganic Chemistry, Academic
Press, San Diego, 2001.
- P.H. Quevauviller, Method Performance Studies for Speciation
Analysis, The Royal Society of Chemistry, Cambridge, UK, 1998.
- Y.P. Kalra, Handbook of References Method for Plant Analysis,
CRC Press, Boca Rotan, 1998.
- R.N. Malik, S.Z. Husain, I. Nazir, Heavy metal contamination
and accumulation in soil and wild plant species from industrial
area of Islamabad, Pakistan, Pak. J. Bot., 42 (2010) 291–301.
- K. Sekabira, H. Oryem–Origa, G. Mutumba, E. Kakudidi,
T.A. Basamba, Heavy metal phytoremediation by Commelina
benghalensis (L) and Cynodon dactylon (L) growing in urban
stream sediments, Int. J. Plant Physiol. Biochem., 3 (2011) 133–142.
- Y. Sun, Q. Zhou, L. Wang, W. Liu, Cadmium tolerance and
accumulation characteristics of Bidens pilosa L. as a potential
Cd-hyperaccumulator, J. Hazard. Mater., 161 (2009) 808–814.
- S. Yang, D.S. Simbeye, Computerized greenhouse environmental
monitoring and control system based on LabWindows/CVI,
J. Comput., 8 (2013) 399–408.
- B. Dabkowski, Applying Oxidation Reduction Potential Sensors
in Biological Nutrient Removal Systems, HACH Company,
Colorado, 2006.
- K. Muda, A. Aris, M.R. Salim, Z. Ibrahim, Biomass Now:
Sustainable Growth and Use, M.D. Matovic, Ed., Sequential
Anaerobic-Aerobic Phase Strategy Using Microbial Granular
Dludge for Textile Wastewater Treatment, InTech Publisher,
Croatia, 2013.
- United States of Environmental Protection Agency (USEPA),
How to Evaluate Alternative Clean Up Technologies for
Underground Storage Tank Sites: A Guide for Corrective Action
Plan Reviewers, EPA, Washington, D.C., 2004. Available at:
http://www.epa.gov/oust/pubs/tums.htm.
- New England Interstate Water Pollution Control Commission
(NEIWPCC), Sequencing Batch Reactor Design and Operational
Considerations, Lowell, Massachusetts, 2005. Available at: www.
neiwpcc.org/neiwpcc_docs/sbr_manual.pdf.
- V.A. Vitorello, F.R.C. Capaldi, V.A. Stefanuto, Recent advances
in aluminum toxicity and resistance in higher plants, Braz.
J. Plant Physiol., 17 (2005) 129–143.
- V. Nenova, Effect of iron supply on growth and photosystem II
efficiency of pea plants, Gen. Appl. Plant Physiol., (2006) 81–90.
- A.P.G.C. Marques, A.O.S.S. Rangel, P.M.L. Castro, Remediation
of heavy metal contaminated soils: phytoremediation as a
potentially promising clean-up technology, Crit. Rev. Environ.
Sci. Technol., 39 (2009) 622–654.
- H.S. Titah, S.R.S. Abdullah, M. Idris, N. Anuar, H. Basri,
M. Mukhlisin, Arsenic toxicity on Ludwigia octovalvis in spiked
sand, Bull. Environ. Contam. Toxicol., 90 (2013) 714–719.
- A.A.A. Latiff, A.T. Abd. Karim, A.S. Ahmad, M.B. Ridzuan,
Y.-T. Hung, Phytoremediation of metals in industrial sludge by
Cyperus Kyllingia-Rasiga, Asystassia Intrusa and Scindapsus Pictus
Var Argyaeus plant species, Int. J. Integr. Eng., 4 (2012) 1–8.
- M. Bandiera, Improving Phytoremediation Efficiency in Metal-Polluted Wastes, Ph.D Thesis, University of Padova, Padua,
Italy, 2010.
- M.N. Prasad, K. Strzalka, Physiology and Biochemistry of Metal
Toxicity and Tolerance in Plants, Kluwer Academic Publishers,
Dordrecht, 2002.
- M. Wong, Visual symptoms of plant nutrient deficiencies
in nursery and landscape plants, Soil Crop Manage., 10 (2005)
1–4.
- G. Hochmuth, Soil and Water Science, UF/IFAS Extension,
University of Florida, Gainesville, Florida, 2014.
- M. Wahsha, C. Bini, E. Argese, F. Minello, S. Fontana,
H. Wahsheh, Heavy metals accumulation in willows growing
on Spolic Technosols from the abandoned Imperina Valley mine
in Italy, J. Geochem. Explor., 123 (2012) 19–24.
- S.P. McGrath, F.J. Zhao, Phytoextraction of metals and metalloids
from contaminated soils, Curr. Opin. Biotechnol., 14 (2003)
277–282.
- R. Banerjee, P. Goswami, K. Pathak, A. Mukherjee, Vetiver grass:
an environment clean-up tool for heavy metal contaminated
iron ore mine-soil, Ecol. Eng., 90 (2016) 25–34.
- D. Baldantoni, A. Cicatelli, A. Bellino, S. Castiglione, Different
behaviours in phytoremediation capacity of two heavy metal
tolerant poplar clones in relation to iron and other trace
elements, J. Environ. Manage., 146 (2014) 94–99.
- V.C. Pandey, Phytoremediation of heavy metals from fly ash
pond by Azolla caroliniana, Ecotoxicol. Environ. Saf., 82 (2012)
8–12.
- E.M. Eid, K.H. Shaltout, M.A. El-Sheikh, T. Asaeda, Seasonal
courses of nutrients and heavy metals in water, sediment and
above- and below-ground Typha domingensis biomass in Lake
Burullus (Egypt): perspectives for phytoremediation, Flora,
207 (2012) 783–794.
- A.K. Hegazy, N.T. Abdel-Ghani, G.A. El-Chaghaby, Phytoremediation
of industrial wastewater potentiality by Typha
domingensis, Int. J. Environ. Sci. Technol., 8 (2011) 639–648.