References

  1. K.A. Hudson-Edwards, B. Dold, Mine waste characterization, management and remediation, Minerals, 5 (2015) 82–85.
  2. K. Lapakko, Metal mine rock and waste characterization tools: an overview, Min. Miner. Sustainable Dev., 67 (2002) 1–30.
  3. D.B. Johnson, K.B. Hallberg, Acid mine drainage remediation options: a review, Sci. Total Environ., 338 (2005) 3–14.
  4. J. Murray, A. Kirschbaum, B. Dold, E.M. Guimaraes, E.P. Miner, Jarosite versus soluble iron-sulfate formation and their role in acid mine drainage formation at the Pan de Azúcar mine tailings (Zn-Pb-Ag), NW Argentina, Minerals, 4 (2014) 477–502.
  5. N. Noosai, V. Vijayan, K. Kengskool, Model application for acid mine drainage treatment processes, Int. J. Energy Environ., 5 (2014) 693–700.
  6. T. Seadira, J. Baloyi, M. Raphulu, R. Moutloalo, A. Ochieng, Acid Mine Drainage Treatment Using Constructed Wetland, Presented at the International Conference on Chemical, Integrated Waste Management & Environmental Engineering (ICCIWEE’2014), Johannesburg, April 15–16, 2014.
  7. A. Esmaeili, Removal of Copper, Zinc and Nickel from Acid Mine Drainage by Natural Clay Minerals: Batch and Column Study, Presented at the 14th International Conference on Environmental Science and Technology, Greece, September 3–5, 2015.
  8. J. Obreque-Contreras, D. Pérez-Flores, P. Gutiérrez, P. Chávez-Crooker, Acid mine drainage in Chile: an opportunity to apply bioremediation technology, Hydrology: Curr. Res., 6 (2015) 1–8.
  9. E.J. Clyde, P. Champagne, H.E. Jamieson, C. Gorman, J. Sourial, The use of a passive treatment system for the mitigation of acid mine drainage at the Williams Brothers mine (California): pilotscale study, J. Cleaner Prod., 130 (2016) 116–125.
  10. Z.A. Diloreto, Biogeochemical Investigations of a Full Scale Mussel Shell Bioreactor for the Treatment of Acid Mine Drainage (AMD), The Stockton Mine, New Zealand, University of Windso, 2016.
  11. O.N. Tiwari, M. Pradhan, T. Nandy, Treatment of mininginfluenced water at Malanjkhand copper mine, Desal. Wat. Treat., 57 (2016) 24755–24764.
  12. B.G. Lottermoser, Mine Wastes: Characterization, Treatment and Environmental Impacts, Springer-Verlag, Berlin Heidelberg, New York, 2010.
  13. C. Costello, Acid Mine Drainage: Innovative Treatment Technologies, Technology Innovation Office, Washington, D.C., 2003. Available at: https://brownfieldstsc.org/pdfs/amdinnovativetrttech_03.pdf.
  14. R.A. Chirakkara, K.R. Reddy, Synergistic Effects of Organic and Metal Contaminants on Phytoremediation, Geo-Congress 2014 Technical Papers, GSP, 234 (2014) 1703–1712.
  15. V. Hooda, Phytoremediation of toxic metals from soil and waste water, J. Environ. Biol., 28 (2007) 367–376.
  16. P. Ziarati, M. Zolfaghari, B. Azadi, The effect of tea residue in promoting phytoremediation of Lavandula angustifoli mill, Int. J. Plant Anim. Environ. Sci., 4 (2014) 479–486.
  17. R.C. Pantola, A. Alam, Potential of Brassicaceae Burnett (Mustard family; Angiosperms) in phytoremediation of heavy metals, Int. J. Sci. Res. Environ. Sci., 2 (2014) 120–138.
  18. M.H. Saier, J.T. Trevors, Phytoremediation, Water Air Soil Pollut., 205 (2010) 61–63.
  19. J.L. Couselo, E. Corredoira, A.M. Vieitez, A. Ballester, Plant Cell Culture Protocols, V.M. Loyola-Vargas, N. Ochoa-Alejo, Eds., Plant Cell Culture of Fast-Growing Trees for Phytoremediation Research Protocols, Methods in Molecular Biology, Humana Press Inc., New York, 2012, pp. 247–263.
  20. A.R. Keshtkar, M.R. Ahmadi, H.R. Naseri, H. Atashi, H. Hamidifar, S.M. Razavi, A. Yazdanpanah, M. Karimpour Reihan, N. Moazami, Application of a vetiver system for unconventional water treatment, Desal. Wat. Treat., 57 (2016) 25474–25483.
  21. M. Sitarska, T. Traczewska, V. Filyarovskaya, Removal of mercury (II) from the aquatic environment by phytoremediation, Desal. Wat. Treat., 57 (2016) 1515–1524.
  22. S.-F. Cheng, C.-Y. Huang, K.-L. Chen, S.-C. Lin, Y.-C. Lin, Phytoattenuation of lead-contaminated agricultural land using Miscanthus floridulus—an in situ case study, Desal. Wat. Treat., 57 (2016) 7773–7779.
  23. S. Adiloglu, M.T. Sağlam, A. Adiloğlu, A. Süme, Phytoremediation of nickel (Ni) from agricultural soils using canola (Brassica napus L.), Desal. Wat. Treat., 57 (2016) 2383–2388.
  24. N. Khellaf, M. Zerdaoui, Phytoaccumulation of zinc using the duckweed Lemna gibba L.: effect of temperature, pH and metal source, Desal. Wat. Treat., 51 (2013) 5755–5760.
  25. N. Rungruang, S. Babel, P. Parkpian, Screening of potential hyperaccumulator for cadmium from contaminated soil, Desal. Wat. Treat., 32 (2011) 19–26.
  26. A.K. Hegazy, H.F. Kabiel, M. Fawzy, Duckweed as heavy metal accumulator and pollution indicator in industrial wastewater ponds, Desal. Wat. Treat., 12 (2009) 400–406.
  27. N.I. Ismail, S.R.S. Abdullah, M. Idris, Assessment of Heavy Metals in Water, Sediment and Plants in Tasik Chini, Presented at the 2nd International Conference of Chemical Engineering and Industrial Biotechnology, Pahang, Malaysia, August 28–29, 2013.
  28. B.V. Tangahu, S.R.S. Abdullah, H. Basri, M. Idris, N. Anuar, M. Mukhlisin, Phytotoxicity of wastewater containing lead (Pb) effects Scirpus grossus, Int. J. Phytorem., 15 (2013) 814–826.
  29. K.B. Jinadasa, N. Tanaka, S. Sasikala, D.R. Werellagama, M.I. Mowjood, W.J. Ng, Impact of harvesting on constructed wetlands performance - a comparison between Scirpus grossus and Typha angustifolia, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 43 (2008) 671–678.
  30. O.H. Jehawi, S.R.S. Abdullah, M. Idris, N. Anuar, H.A. Hasan, A.N.H. Sbani, N.I. Ismail, A reed bed system for the treatment of domestic wastewater and micropollutants, Aust. J. Basic Appl. Sci., 8 (2014).280–283.
  31. I.A. Al-baldawi, S.R.S. Abdullah, N. Anuar, F. Suja, M. Idris, A phytotoxicity test of bulrush (Scirpus grossus) grown with diesel contamination in a free-flow reed bed system, J. Hazard. Mater., 252–253 (2013) 64–69.
  32. N.I. Ismail, S.R.S. Abdullah, M. Idris, Preliminary Test of Mining Wastewater Containing Iron (III) and Aluminium (III) on Scirpus grossus in Phytoremediation Process, Presented at the International Integrated Engineering Summit, Batu Pahat, Malaysia, December 1–4, 2014.
  33. H.S. Titah, S.R.S. Abdullah, M. Idris, N. Anuar, H. Basri, M. Mukhlisin, Phytotoxicity and uptake of arsenic by Ludwigia octovalvis in a pilot reed bed system, Environ. Eng. Sci., 31 (2014) 71–79.
  34. G. Patil, Composite Sampling, In Encyclopedia of Environmetrics, John Wiley & Sons, New York, 2006.
  35. N.K. Moustakas, K.A. Akoumianakis, H.C. Passam, Patterns of dry biomass accumulation and nutrient uptake by okra (Abelmoschus esculentus (L.) Moench.) under different rates of nitrogen application, Aust. J. Crop Sci., 5 (2011) 993–1000.
  36. J. Coombs, D.O. Hall, J.M. Long, O. Scurlock, Techniques in Bioproductivity and Photosynthesis, Pergamon Press, Oxford, England, UK, 1985.
  37. Z. Zhang, Z. Rengel, K. Meney, Polynuclear aromatic hydrocarbons (PAHs) differentially influence growth of various emergent wetland species, J. Hazard. Mater., 182 (2010) 689–695.
  38. A.F. Holleman, E. Willberg, Inorganic Chemistry, Academic Press, San Diego, 2001.
  39. P.H. Quevauviller, Method Performance Studies for Speciation Analysis, The Royal Society of Chemistry, Cambridge, UK, 1998.
  40. Y.P. Kalra, Handbook of References Method for Plant Analysis, CRC Press, Boca Rotan, 1998.
  41. R.N. Malik, S.Z. Husain, I. Nazir, Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan, Pak. J. Bot., 42 (2010) 291–301.
  42. K. Sekabira, H. Oryem–Origa, G. Mutumba, E. Kakudidi, T.A. Basamba, Heavy metal phytoremediation by Commelina benghalensis (L) and Cynodon dactylon (L) growing in urban stream sediments, Int. J. Plant Physiol. Biochem., 3 (2011) 133–142.
  43. Y. Sun, Q. Zhou, L. Wang, W. Liu, Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator, J. Hazard. Mater., 161 (2009) 808–814.
  44. S. Yang, D.S. Simbeye, Computerized greenhouse environmental monitoring and control system based on LabWindows/CVI, J. Comput., 8 (2013) 399–408.
  45. B. Dabkowski, Applying Oxidation Reduction Potential Sensors in Biological Nutrient Removal Systems, HACH Company, Colorado, 2006.
  46. K. Muda, A. Aris, M.R. Salim, Z. Ibrahim, Biomass Now: Sustainable Growth and Use, M.D. Matovic, Ed., Sequential Anaerobic-Aerobic Phase Strategy Using Microbial Granular Dludge for Textile Wastewater Treatment, InTech Publisher, Croatia, 2013.
  47. United States of Environmental Protection Agency (USEPA), How to Evaluate Alternative Clean Up Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers, EPA, Washington, D.C., 2004. Available at: http://www.epa.gov/oust/pubs/tums.htm.
  48. New England Interstate Water Pollution Control Commission (NEIWPCC), Sequencing Batch Reactor Design and Operational Considerations, Lowell, Massachusetts, 2005. Available at: www. neiwpcc.org/neiwpcc_docs/sbr_manual.pdf.
  49. V.A. Vitorello, F.R.C. Capaldi, V.A. Stefanuto, Recent advances in aluminum toxicity and resistance in higher plants, Braz. J. Plant Physiol., 17 (2005) 129–143.
  50. V. Nenova, Effect of iron supply on growth and photosystem II efficiency of pea plants, Gen. Appl. Plant Physiol., (2006) 81–90.
  51. A.P.G.C. Marques, A.O.S.S. Rangel, P.M.L. Castro, Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology, Crit. Rev. Environ. Sci. Technol., 39 (2009) 622–654.
  52. H.S. Titah, S.R.S. Abdullah, M. Idris, N. Anuar, H. Basri, M. Mukhlisin, Arsenic toxicity on Ludwigia octovalvis in spiked sand, Bull. Environ. Contam. Toxicol., 90 (2013) 714–719.
  53. A.A.A. Latiff, A.T. Abd. Karim, A.S. Ahmad, M.B. Ridzuan, Y.-T. Hung, Phytoremediation of metals in industrial sludge by Cyperus Kyllingia-Rasiga, Asystassia Intrusa and Scindapsus Pictus Var Argyaeus plant species, Int. J. Integr. Eng., 4 (2012) 1–8.
  54. M. Bandiera, Improving Phytoremediation Efficiency in Metal-Polluted Wastes, Ph.D Thesis, University of Padova, Padua, Italy, 2010.
  55. M.N. Prasad, K. Strzalka, Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants, Kluwer Academic Publishers, Dordrecht, 2002.
  56. M. Wong, Visual symptoms of plant nutrient deficiencies in nursery and landscape plants, Soil Crop Manage., 10 (2005) 1–4.
  57. G. Hochmuth, Soil and Water Science, UF/IFAS Extension, University of Florida, Gainesville, Florida, 2014.
  58. M. Wahsha, C. Bini, E. Argese, F. Minello, S. Fontana, H. Wahsheh, Heavy metals accumulation in willows growing on Spolic Technosols from the abandoned Imperina Valley mine in Italy, J. Geochem. Explor., 123 (2012) 19–24.
  59. S.P. McGrath, F.J. Zhao, Phytoextraction of metals and metalloids from contaminated soils, Curr. Opin. Biotechnol., 14 (2003) 277–282.
  60. R. Banerjee, P. Goswami, K. Pathak, A. Mukherjee, Vetiver grass: an environment clean-up tool for heavy metal contaminated iron ore mine-soil, Ecol. Eng., 90 (2016) 25–34.
  61. D. Baldantoni, A. Cicatelli, A. Bellino, S. Castiglione, Different behaviours in phytoremediation capacity of two heavy metal tolerant poplar clones in relation to iron and other trace elements, J. Environ. Manage., 146 (2014) 94–99.
  62. V.C. Pandey, Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana, Ecotoxicol. Environ. Saf., 82 (2012) 8–12.
  63. E.M. Eid, K.H. Shaltout, M.A. El-Sheikh, T. Asaeda, Seasonal courses of nutrients and heavy metals in water, sediment and above- and below-ground Typha domingensis biomass in Lake Burullus (Egypt): perspectives for phytoremediation, Flora, 207 (2012) 783–794.
  64. A.K. Hegazy, N.T. Abdel-Ghani, G.A. El-Chaghaby, Phytoremediation of industrial wastewater potentiality by Typha domingensis, Int. J. Environ. Sci. Technol., 8 (2011) 639–648.