References

  1. L. McNeill, J. McLean, M. Edwards, J. Parks, State of the Science of Hexavalent Chromium in Drinking Water, Water Research Foundation, Denver, CO, USA, 2012.
  2. P.K. Ghosh, Hexavalent chromium [Cr(VI)] removal by acid modified waste activated carbons, J. Hazard. Mater., 171 (2009) 116–122.
  3. D. Bregnbak, J.D. Johansen, M.S. Jellesen, C. Zachariae, T. Menné, J.P. Thyssen, Chromium allergy and dermatitis: prevalence and main findings, Contact Dermatitis, 73 (2015) 261–280.
  4. J. Guertin, C.P. Avakian, J.A. Jacobs, Chromium (VI) Handbook, CRC Press, Boca Raton, FL, USA, 2016.
  5. A. Zhitkovich, Chromium in drinking water: sources, metabolism, and cancer risks, Chem. Res. Toxicol., 24 (2011) 1617–1629.
  6. N. McCarroll, N. Keshava, J. Chen, G. Akerman, A. Kligerman, E. Rinde, An evaluation of the mode of action framework for mutagenic carcinogens case study II: chromium (VI), Environ. Mol. Mutagen., 51 (2010) 89–111.
  7. H. Klapper, Control of Eutrophication in Inland Waters, Ellis Horwood Ltd., Chichester, West Sussex, UK, 1991.
  8. J. Dai, H. Yang, H. Yan, Y.G. Shangguan, Q. Zheng, R.S. Cheng, Phosphate adsorption from aqueous solutions by disused adsorbents: chitosan hydrogel beads after the removal of copper (II), Chem. Eng. J., 166 (2011) 970–977.
  9. P.R.F. Bell, Eutrophication and coral reefs—some examples in the Great Barrier Reef lagoon, Water Res., 26 (1992) 553–568.
  10. I. Heidmann, W. Calmano, Removal of Cr(VI) from model wastewaters by electrocoagulation with Fe electrodes, Sep. Purif. Technol., 61 (2008) 15–21.
  11. S. Rayman, R.E. White, Simulation of reduction of Cr(VI) by Fe(II) produced electrochemically in a parallel-plate electrochemical reactor, J. Electrochem. Soc., 156 (2009) 96–104.
  12. L. Alidokht, A.R. Khataee, A. Reyhanitabar, S. Oustan, Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution, Desalination, 270 (2011) 105–110.
  13. G.-R. Xu, J.-N. Wang, C.-J. Li, Preparation of hierarchically nanofibrous membrane and its high adaptability in hexavalent chromium removal from water, Chem. Eng. J., 198 (2012) 310–317.
  14. A. Kaya, C. Onac, H.K. Alpoguz, A. Yilmaz, N. Atar, Removal of Cr(VI) through calixarene based polymer inclusion membrane from chrome plating bath water, Chem. Eng. J., 283 (2016) 141–149.
  15. T. Ölmez, The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology, J. Hazard. Mater., 162 (2009) 1371–1378.
  16. I. Heidmann, W. Calmano, Removal of Zn(II), Cu(II), Ni(II), Ag(I) and Cr(VI) present in aqueous solutions by aluminium electrocoagulation, J. Hazard. Mater., 152 (2008) 934–941.
  17. Y.Q. Xing, X.M. Chen, D.H. Wang, Electrically regenerated ion exchange for removal and recovery of Cr(VI) from wastewater, Environ. Sci. Technol., 41 (2007) 1439–1443.
  18. O. Kusku, B.L. Rivas, B.F. Urbano, M. Arda, N. Kabay, M. Bryjak, A comparative study of removal of Cr(VI) by ion exchange resins bearing quaternary ammonium groups, J. Chem. Technol. Biotechnol., 89 (2014) 851–857.
  19. N. Wang, Y.Z. Xu, L.H. Zhu, X.T. Shen, H.Q. Tang, Reconsideration to the deactivation of TiO2 catalyst during simultaneous photocatalytic reduction of Cr(VI) and oxidation of salicylic acid, J. Photochem. Photobiol., A, 201 (2009) 121–127.
  20. J.Y. Yu, S.D. Zhuang, X.Y. Xu, W.C. Zhu, B. Feng, J.G. Hu, Photogenerated electron reservoir in hetero-p–n CuO–ZnO nanocomposite device for visible-light-driven photocatalytic reduction of aqueous Cr(VI), J. Mater. Chem. A, 3 (2015) 1199–1207.
  21. A. Baran, E. Bıçak, Ş.H. Baysal, S. Önal, Comparative studies on the adsorption of Cr(VI) ions on to various sorbents, Bioresour. Technol., 98 (2007) 661–665.
  22. A.K. Bhattacharya, T.K. Naiya, S.N. Mandal, S.K. Das, Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents, Chem. Eng. J., 137 (2008) 529–541.
  23. G.H. Jing, Z.M. Zhou, L. Song, M.X. Dong, Ultrasound enhanced adsorption and desorption of chromium (VI) on activated carbon and polymeric resin, Desalination, 279 (2011) 423–427.
  24. J.H. Wang, X. Zhang, B. Zhang, Y.F. Zhao, R. Zhai, J.D. Liu, R.F. Chen, Rapid adsorption of Cr(VI) on modified halloysite nanotubes, Desalination, 259 (2010) 22–28.
  25. M. Gheju, I. Balcu, G. Mosoarca, Removal of Cr(VI) from aqueous solutions by adsorption on MnO2, J. Hazard. Mater., 310 (2016) 270–277.
  26. Z.L. Ye, S.H. Chen, S.M. Wang, L.F. Lin, Y.J. Yan, Z.J. Zhang, J.S. Chen, Phosphorus recovery from synthetic swine wastewater by chemical precipitation using response surface methodology, J. Hazard. Mater., 176 (2010) 1083–1088.
  27. C. Aydiner, I. Demir, E. Yildiz, Modeling of flux decline in crossflow microfiltration using neural networks: the case of phosphate removal, J. Membr. Sci., 248 (2005) 53–62.
  28. G.L. Qiu, Y.M. Law, S. Das, Y.P. Ting, Direct and complete phosphorus recovery from municipal wastewater using a hybrid microfiltration-forward osmosis membrane bioreactor process with seawater brine as draw solution, Environ. Sci. Technol., 49 (2015) 6156–6163.
  29. N. Martí, L. Pastor, A. Bouzas, J. Ferrer, A. Seco, Phosphorus recovery by struvite crystallization in WWTPs: influence of the sludge treatment line operation, Water Res., 44 (2010) 2371–2379.
  30. W. Moerman, M. Carballa, A. Vandekerckhove, D. Derycke, W. Verstraete, Phosphate removal in agro-industry: pilot- and full-scale operational considerations of struvite crystallization, Water Res., 43 (2009) 1887–1892.
  31. M.L. Yu, D.Y. Yin, J. Shi, D.M. Song, Z.W. Xu, Phosphorus removal and recovery from high phosphorus wastewater by the HAP crystallization process, Orient. J. Chem., 32 (2016) 235–241.
  32. W.W. Huang, S.B. Wang, Z.H. Zhu, L. Li, X.D. Yao, V. Rudolph, F. Haghseresht, Phosphate removal from wastewater using red mud, J. Hazard. Mater., 158 (2008) 35–42.
  33. N.Y. Mezenner, A. Bensmaili, Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste, Chem. Eng. J., 147 (2009) 87–96.
  34. J.-W. Choi, S.-Y. Lee, S.-H. Lee, K.-B. Lee, D.-J. Kim, S.-W. Hong, Adsorption of phosphate by amino-functionalized and co-condensed SBA-15, Water Air Soil Pollut., 223 (2012) 2551–2562.
  35. J.B. Xiong, Y. Qin, E. Islam, M. Yue, W.F. Wang, Phosphate removal from solution using powdered freshwater mussel shells, Desalination, 276 (2011) 317–321.
  36. J. Lalley, C. Han, X. Li, D.D. Dionysiou, M.N. Nadagouda, Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests, Chem. Eng. J., 284 (2016) 1386–1396.
  37. G.R. Qian, L.L. Feng, J.Z. Zhou, Y.F. Xu, J.Y. Liu, J. Zhang, Z.P. Xu, Solubility product (Ksp)-controlled removal of chromate and phosphate by hydrocalumite, Chem. Eng. J., 181 (2012) 251–258.
  38. Ş. Ertul, M. Bayrakcı, M. Yilmaz, Removal of chromate and phosphate anion from aqueous solutions using calix[4]aren receptors containing proton switchable units, J. Hazard. Mater., 181 (2010) 1059–1065.
  39. S. Mandal, S. Mayadevi, Adsorption of fluoride ions by Zn–Al layered double hydroxides, Appl. Clay Sci., 40 (2008) 54–62.
  40. S.-L. Wang, C.H. Liu, M.K. Wang, Y.H. Chuang, P.N. Chiang, Arsenate adsorption by Mg/Al–NO3 layered double hydroxides with varying the Mg/Al ratio, Appl. Clay Sci., 43 (2009) 79–85.
  41. L. Lv, J. He, M. Wei, D.G. Evans, Z.L. Zhou, Treatment of high fluoride concentration water by MgAl-CO3 layered double hydroxides: kinetic and equilibrium studies, Water Res., 41 (2007) 1534–1542.
  42. K.D. Collins, M.W. Washabaugh, The Hofmeister effect and the behavior of water at interfaces, Q. Rev. Biophys., 18 (1985) 323–422.
  43. T. Sato, S. Onai, T. Yoshioka, A. Okuwaki, Causticization of sodium carbonate with rock-salt type magnesium aluminium oxide formed by the thermal decomposition of hydrotalcite-like layered double hydroxide, J. Chem. Technol. Biotechnol., 57 (1993) 137–140.
  44. P. Cai, H. Zheng, C. Wang, H.W. Ma, J.C. Hu, Y.B. Pu, P. Liang, Competitive adsorption characteristics of fluoride and phosphate on calcined Mg–Al–CO3 layered double hydroxides, J. Hazard. Mater., 213 (2012) 100–108.
  45. H.T. Zhu, Y.J. Ma, Progress in application of hydrotalcite-like materials in heavy metal wastewater treatment, Technol. Water Treat., 37 (2011) 11–14.
  46. J.L. Sun, W.J. Zhen, J. Li, Structure, properties and applications of LDHs, Chem. Ind. Eng. Prog., 32 (2013) 610–616.
  47. L. Lv, J. He, M. Wei, D.G. Evans, X. Duan, Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO3 layered double hydroxides, J. Hazard. Mater., 133 (2006) 119–128.
  48. X.L. Song, Y.H. Wu, Simultaneous adsorption of chromium (VI) and phosphate by calcined Mg-Al-CO3 layered double hydroxides, Bull. Korean Chem. Soc., 35 (2014) 1817–1824.
  49. J.S. Wu, Y.K. Xiao, J.Y. Wan, L.R. Wen, The growth mechanism of hydrotalcite crystal, Sci. China Technol. Sci., 55 (2012) 872–878.
  50. Y.Q. Yang, N.Y. Gao, W.H. Chu, Y.J. Zhang, Y. Ma, Adsorption of perchlorate from aqueous solution by the calcination product of Mg/(Al–Fe) hydrotalcite-like compounds, J. Hazard. Mater., 209 (2012) 318–325.
  51. Y. Li, L.W. Shi, Z.S. Liu, G.Q. Yang, Sorption of o-cresol on pristine, calcined and modified hydrotalcite-like compounds, Acta Chim. Sinica, 70 (2012) 683–690.
  52. X.-H. Wang, F.-F. Liu, L. Lu, S. Yang, Y. Zhao, L.-B. Sun, S.-G. Wang, Individual and competitive adsorption of Cr(VI) and phosphate onto synthetic Fe–Al hydroxides, Colloids Surf., A, 423 (2013) 42–49.
  53. D.J. Kang, X.L. Yu, S.R. Tong, M.F. Ge, J.C. Zuo, C.Y. Cao, W.G. Song, Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution, Chem. Eng. J., 228 (2013) 731–740.
  54. X. Cheng, X.R. Huang, X.Z. Wang, D.Z. Sun, Phosphate adsorption by ZnAlLa layered double hydroxides from excess sludge filtrate, CIESC J., 61 (2010) 955–962.
  55. M.X. Zhu, Y.P. Li, L. Zhang, H.W. Ji, Adsorption of phosphate by hydrotalcite and its calcined product, Acta Miner. Sinica, 25 (2005) 27–32.
  56. Y. Ye, S.J. Yang, L.B. Zheng, Z.Y. Shen, S.S. Ji, X. Huang, Comparison and discussion on the adsorption capacity of several compounds with layered structure, J. Inorg. Mater., 19 (2004) 1379–1385.
  57. G.-X. Pan, P.-P. Qian, F. Cao, Z.-M. Ni, Thermal stability and ionexchange properties of layered double hydroxides investigation based on the second law of crystal chemistry, Acta Miner. Sinica, 33 (2013) 25–30.
  58. W.D. Wang, R.X. Hao, X.X. Zhu, J.J. Wan, L.Y. Zhong, Regeneration method and mechanism of phosphorus adsorbent Mg/Al-LDO, China Environ. Sci., 37 (2017) 2092–2099.