References

  1. N. Savage, M.S. Diallo, Nanomaterials and water purification: opportunities and challenges, J. Nanopart. Res., 7 (2005) 331–342.
  2. UNICEF, WHO, Progress on Drinking Water and Sanitation: 2012 Update, UNICEF and World Health Organization, Printed in the United States of America, 2012.
  3. K. Laxman, M.T.Z. Myint, M. Al Abri, P. Sathe, S. Dobretsov, J. Dutta, Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes, Desalination, 362 (2015) 126–132.
  4. I.A. Shiklomanov, Appraisal and assessment of world water resources, Water Int., 25 (2000) 11–32.
  5. S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442.
  6. L. Haibo, Z. Linda, P. Likun, S. Zhuo, Novel graphene-like electrodes for capacitive deionization, Environ. Sci. Technol., 44 (2010) 8692–8697.
  7. D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen, J. Zhang, Enhanced capacitive deionization performance of graphene/carbon nanotube composites, J. Mater. Chem., 22 (2012) 14696.
  8. A.G. El-Deen, N.A.M. Barakat, H.Y. Kim, Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology, Desalination, 344 (2014) 289–298.
  9. T. Alencherry, A.R. Naveen, G. Somnath, D. Jency, R. Venkataraghavan, Show more, effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization, Desalination, 415 (2017) 14–19.
  10. Y.A.C. Jande, W.S. Kim, Desalination using capacitive deionization at constant current, Desalination, 329 (2013) 29–34.
  11. M.W. Saleem, Y.A.C. Jande, M. Asif, W.-S. Kim, Hybrid CV-CC operation of capacitive deionization in comparison with constant current and constant voltage, Sep. Sci. Technol., 51 (2016) 1063–1069.
  12. M.S. Gaikwad, C. Balomajumder, Capacitive deionization for desalination using nanostructured electrodes, Anal. Lett., 49 (2016) 1641–1655.
  13. C.-H. Hou, C.-Y. Huang, A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination, 314 (2013) 124–129.
  14. T. Alencherry, A.R. Naveen, G. Somnath, D. Jency, R. Venkataraghavan, Effect of increasing electrical conductivity and hydrophilicity on the electrosorption capacity of activated carbon electrodes for capacitive deionization, Desalination, 415 (2017) 14–19.
  15. G. Wang, B. Qian, Q. Dong, J. Yang, Z. Zhao, J. Qiu, Highly mesoporous activated carbon electrode for capacitive deionization, Sep. Purif. Technol., 103 (2013) 216–221.
  16. J. Zhang, J. Fang, J. Han, T. Yan, L. Shi, D. Zhang, N, P, S co-doped hollow carbon polyhedra derived from MOF-based core–shell nanocomposites for capacitive deionization, J. Mater. Chem. A, 6 (2018) 15245–15252.
  17. T. Yan, J. Liu, H. Lei, L. Shi, Z. An, H. Park, D. Zhang, Capacitive deionization of saline water using sandwich-like nitrogendoped graphene composites via a self-assembling strategy, Environ. Sci.: Nano, 5 (2018) 2722–2730.
  18. R.L. Zornitta, P. Srimuk, J. Lee, B. Krüner, M. Aslan, L.A.M. Ruotolo, V. Presser, Charge and potential balancing for optimized capacitive deionization using lignin‐derived, low‐cost activated carbon electrodes, Chem. Sus. Chem., 11 (2018) 2101–2113.
  19. D.S. Kim, S.Y. Kwak, Photocatalytic inactivation of E. coli with a mesoporous TiO2 coated film using the film adhesion method, Environ. Sci. Technol., 43 (2009) 148–151.
  20. S. Ghosh, V.S. Goudar, K.G. Padmalekha, S.V. Bhat, S.S. Indi, H.N. Vasan, ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism, RSC Adv., 2 (2012) 930–940.
  21. P. Pandey, S. Merwyn, G.S. Agarwal, B.K. Tripathi, S.C. Pant, Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria, J. Nanopart. Res., 14 (2012) 709.
  22. C. Yang, J. Mamouni, Y. Tang, L. Yang, Antimicrobial activity of single-walled carbon nanotubes: length effect, Langmuir, 26 (2010) 16013–16019.
  23. S. Kumar, S. Ghosh, N. Munichandraiah, H.N. Vasan, 1.5 V battery driven reduced graphene oxide-silver nanostructure coated carbon foam (rGO-Ag-CF) for the purification of drinking water, Nanotechnology, 24 (2013) 235101.
  24. I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria, J. Colloid Interface Sci., 275 (2004) 177–182.
  25. A. Yasin, J. Jeong, I.M.A. Mohammed, C.H. Park, C.S. Kim, Fabrication of N-doped and SnO2-incorporated activated carbon to enhance desalination and bio-decontamination performance for capacitive deionization, J. Alloys Compd., 729 (2017) 764–775.
  26. A.S. Yasin, I.M.A. Mohamed, H.M. Mousa, C.H. Park, C.S. Kim, Facile synthesis of TiO2/ZrO2 nanofibers/nitrogen co-doped activated carbon to enhance the desalination and bacterial inactivation via capacitive deionization, Sci. Rep., 8 (2018) 541.
  27. Y. Wang, A.G. El-Deen, P. Li, H.L. Bernice, Z. Guo, M.M. Khin, Y.S. Vikhe, J. Wang, R.G. Hu, R.M. Boom, K.M. Kline, D.L. Becker, H. Duan, M.B. Chan-Park, High-performance capacitive deionization disinfection of water with graphene oxide-graftquaternized chitosan nanohybrid electrode coating, ACS Appl. Mater. Interfaces, 9 (2015) 10142–10157.
  28. J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Y.-K. Kim, Y.-S. Lee, D.H. Jeong, M.-H. Cho, Antimicrobial effects of silver nanoparticles, Nanomed. Nanotechnol. Biol. Med., 3 (2007) 95–101.
  29. P.S. Harikumar, J. Litty, C.M. Manjusha, Bio synthesis of silver nanoparticles and its application in microbial treatment of drinking water, Nanosci. Nanotechnol., 5 (2011) 23–27.
  30. A.H.M. El-Aassar, M.M. Said, A.M. Abdel-Gawad, H.A. Shawky, Using silver nanoparticles coated on activated carbon granules in columns for microbiological pollutants water disinfection in Abu Rawash area, Great Cairo, Egypt, Aust. J. Basic Appl. Sci., 7 (2013) 422–432.
  31. T. Theivasanthi, M. Alagar, Anti-bacterial studies of silver nanoparticles, arXiv preprint arXiv:1101.0348, 2011.
  32. S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology, 18 (2007) 225103.
  33. K. Mavani, M. Shah, Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent, Int. J. Eng. Res. Technol., 2 (2013) 1–5.
  34. W. Huang, Y. Zhang, S. Bao, S. Song, Desalination by capacitive deionization with carbon-based materials as electrode: a review, Surf. Rev. Lett., 20 (2013) 1330003.
  35. E. García-Quismondo, C. Santos, J. Lado, J. Palma, M.A. Anderson, Optimizing the energy efficiency of capacitive deionization reactors working under real-world conditions, Environ. Sci. Technol., 47 (2013) 11866–11872.
  36. C. Limin, Y. Yanyan, D. Xiaoyue, L. Wei, Capacitive deionization performance of activated carbon electrodes prepared by a novel liquid binder, Sep. Sci. Technol., 48 (2012) 359–365.
  37. P. Byeong-Hee, C. Jae-Hwan, Improvement in the capacitance of a carbon electrode prepared using water-soluble polymer binder for a capacitive deionization application, Electrochim. Acta, 55 (2010) 2888–2893.
  38. Y.-i. Zou, M.-M. Jia, J.-Q. Fan, F.-M. Qin, J.-Q. Yu, Y.-N. Zhao, Silver nanoparticle impregnated porous carbon as a nonenzymatic hydrogen peroxide sensor, Int. J. Electrochem. Sci., 11 (2016) 5781–5791.
  39. K.-K. Park, J.-B. Lee, P.-Y. Park, S.-W. Yoon, J.-S. Moon, H.-M. Eum, C.-W. Lee, Development of a carbon sheet electrode for electrosorption desalination, Desalination, 206 (2007) 86–91.
  40. S. Nadakatti, M. Tendulkar, M. Kadam, Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology, Desalination, 268 (2011) 182–188.
  41. E.R. Nightingale, Phenomenological theory of ion solvation. Effective radii of hydrated ions, J. Phys. Chem., 63 (1959) 1381–1387.
  42. G. Yang, P. Likun, L. Haibo, Z. Yanping, Z. Zhejuan, C. Yiwei, S. Zhuo, Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes, Thin Solid Films, 517 (2009) 1616–1619.
  43. C.J. Gabelich, T.D. Tran, I.H.M. Suffet, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environ. Sci. Technol., 36 (2002) 3010–3019.
  44. E. Avraham, B. Yaniv, A. Soffer, D. Aurbach, Developing ion electroadsorption stereoselectivity, by pore size adjustment with chemical vapor deposition onto active carbon fiber electrodes. Case of Ca2+/Na+ separation in water capacitive desalination, J. Phys. Chem. C, 112 (2008) 7385–7389.
  45. K. Laxman, M.T.Z. Myint, M. Al Abri, L. Al-Gharibi, B. Al Namani, H. Bourdoucen, J. Dutta, Efficient desalination of brackish ground water via a novel capacitive deionization cell using nanoporous activated carbon cloth electrodes, J. Eng. Res., 12 (2015) 22–31.
  46. J.S. Kim, Y.S. Jeon, J.W. Rhim, Application of poly(vinyl alcohol) and polysulfone based ionic exchange polymers to membrane capacitive deionization for the removal of monoand divalent salts, Sep. Purif. Technol., 157 (2016) 45–52.
  47. B. Chapman, T. Ross, Escherichia coli and Salmonella enterica are protected against acetic acid, but not hydrochloric acid, by hypertonicity, Appl. Environ. Microbiol., 75 (2009) 3605–3610.