References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37–38.
  2. J.H. Carey, J. Lawrence, H.M. Tosine, Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions, Bull. Environ. Contam. Toxicol., 16 (1976) 697–701.
  3. D.D. Zeng, L.M. Yang, P.P. Zhou, D.S. Hu, Y. Xie, S.Q. Li, L.S. Jiang, Y. Ling, J.S. Zhao, Au–Cu alloys deposited on titanium dioxide nanosheets for efficient photocatalytic hydrogen evolution, Int. J. Hydrogen Energy, 43 (2018) 15155–15163.
  4. Z.W. Shao, Y.N. He, T.T. Zeng, Y.N. Yang, X.P. Pu, B. Ge, J.M. Dou, Highly efficient photocatalytic H2 evolution using the Ni2P-Zn0.5Cd0.5S photocatalyst under visible light irradiation, J. Alloys Compd., 769 (2018) 889–897.
  5. T.T. Zhang, X. Shao, D.F. Zhang, X.P. Pu, Y.X. Tang, J. Yin, B. Ge, W.Z. Li, Synthesis of direct Z-scheme g-C3N4/Ag2VO2PO4 photocatalysts with enhanced visible light photocatalytic activity, Sep. Purif. Technol., 195 (2018) 332–338.
  6. D. Chen, J. Ye, Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties, Adv. Funct. Mater., 18 (2008) 1922–1928.
  7. B. Weng, M.-Q. Yang, N. Zhang, Y.-J. Xu, Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide, J. Mater. Chem. A, 2 (2014) 9380–9389.
  8. L. Liu, J. Liu, D.D. Sun, Graphene oxide enwrapped Ag3PO4 composite: towards a highly efficient and stable visible-light-induced photocatalyst for water purification, Catal. Sci. Technol., 2 (2012) 2525–2532.
  9. T.K. Jana, A. Pal, K. Chatterjee, Self assembled flower like CdS–ZnO nanocomposite and its photo catalytic activity, J. Alloys Compd., 583 (2014) 510–515.
  10. S.H. Liang, T.T. Zhang, D.F. Zhang, X.P. Pu, X. Shao, W.Z. Li, J.M. Dou, One-pot combustion synthesis and efficient broad spectrum photoactivity of Bi/BiOBr:Yb,Er/C photocatalyst, J. Am. Ceram. Soc., 101 (2018) 3424–3436.
  11. Y. Yang, Y. Liu, B. Huang, R. Zhang, Y. Dai, X. Qin, X. Zhang, Enhanced visible photocatalytic activity of a BiVO4@β-AgVO3 composite synthesized by an in situ growth method, RSC Adv., 4 (2014) 20058–20061.
  12. M.C. Gao, D.F. Zhang, X.P. Pu, H.Y. Ma, C.H. Su, X. Gao, J.M. Dou, Surface decoration of BiOBr with BiPO4 nanoparticles to build heterostructure photocatalysts with enhanced visiblelight photocatalytic activity, Sep. Purif. Technol., 170 (2016) 183–189.
  13. L. Zhang, H. Wang, Z. Chen, P.K. Wong, J. Liu, Bi2WO6 micro/nano-structures: synthesis, modifications and visible-light-driven photocatalytic applications, Appl. Catal., B, 106 (2011) 1–13.
  14. C. Li, G. Chen, J. Sun, H. Dong, Y. Wang, C. Lv, Construction of Bi2WO6 homojunction via QDs self-decoration and its improved separation efficiency of charge carriers and photocatalytic ability, Appl. Catal., B, 160 (2014) 383–389.
  15. Y. Lv, W. Yao, R. Zong, Y. Zhu, Fabrication of wide–range–visible photocatalyst Bi2WO6–x nanoplates via surface oxygen vacancies, Sci. Rep., 6 (2016) 19347.
  16. R.F. Tang, H.F. Su, Y.W. Sun, X.X. Zhang, L. Li, C.H. Liu, S.Y. Zeng, D.Z. Sun, Enhanced photocatalytic performance in Bi2WO6/SnS heterostructures: facile synthesis, influencing factors and mechanism of the photocatalytic process, J. Colloid Interface Sci., 466 (2016) 388–399.
  17. S. Wang, H. Yang, X. Wang, W. Feng, Surface disorder engineering of flake-like Bi2WO6 crystals for enhanced photocatalytic activity, J. Electron. Mater., 48 (2019) 2067–2076.
  18. L. Zhang, Y. Zhu, A review of controllable synthesis and enhancement of performances of bismuth tungstate visible light-driven photocatalysts, Catal. Sci. Technol., 2 (2012) 694–706.
  19. L.M. Zhao, C.H. Shu, Z.F. Jia, C.Z. Wang, Surface defects control for ZnO nanorods synthesized through a gas-assisted hydrothermal process, J. Electron. Mater., 46 (2017) 432–438.
  20. D. Kuang, T. Brezesinski, B. Smarsly, Hierarchical porous silica materials with a trimodal pore system using surfactant templates, J. Am. Chem. Soc., 126 (2004) 10534–10535.
  21. J.X. Liu, D.F. Zhang, X.P. Pu, J.X. Liu, R.G. Zhang, Combustion synthesis of Zn1–xCdxS and its photodegradation performance of methylene blue, Mater. Lett., 117 (2014) 158–161.
  22. C.Y. Sun, Q.H. Xu, Y. Xie, Y. Ling, J.L. Jiao, H.H. Zhu, J.S. Zhao, X.M. Liu, B. Hu, D. Zhou, High-efficient one-pot synthesis of carbon quantum dots decorating Bi2MoO6 nanosheets heterostructure with enhanced visible-light photocatalytic properties, J. Alloys Compd., 723 (2017) 333–344.
  23. J. Wu, F. Duan, Y. Zheng, Y. Xie, Synthesis of Bi2WO6 nanoplate built hierarchical nest-like structures with visible-light-induced photocatalytic activity, J. Phys. Chem. C, 111 (2007) 12866–12871.
  24. Y. Tian, G. Hua, W. Xu, N. Li, M. Fang, L. Zhang, Bismuth tungstate nano/microstructures: controllable morphologies, growth mechanism and photocatalytic properties, J. Alloys Compd., 509 (2011) 724–730.
  25. Y. Li, J. Liu, X. Huang, G. Li, Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres, Cryst. Growth Des., 7 (2007) 1350–1355.
  26. M. Shang, W. Wang, H. Xu, New Bi2WO6 nanocages with high visible-light-driven photocatalytic activities prepared in refluxing EG, Cryst. Growth Des., 9 (2008) 991–996.
  27. L. Zhang, W. Wang, L. Zhou, H. Xu, Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities, Small, 3 (2007) 1618–1625.
  28. D. He, L. Wang, H. Li, T. Yan, D. Wang, T. Xie, Self-assembled 3D hierarchical clew-like Bi2WO6 microspheres: synthesis, photo-induced charges transfer properties, and photocatalytic activities, Cryst. Eng. Comm., 13 (2011) 4053–4059.
  29. C. Zheng, H. Yang, Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance, J. Mater. Sci. - Mater. Electron., 29 (2018) 9291–9300.
  30. J. He, W. Wang, F. Long, Z. Zou, Z. Fu, Z. Xu, Hydrothermal synthesis of hierarchical rose-like Bi2WO6 microspheres with high photocatalytic activities under visible-light irradiation, Mater. Sci. Eng., B, 177 (2012) 967–974.
  31. X. Wang, J.C. Yu, C. Ho, Y. Hou, X. Fu, Photocatalytic activity of a hierarchically macro/mesoporous titania, Langmuir, 21 (2005) 2552–2559.
  32. M. Laabd, H.A. Ahsaine, A. El Jaouhari, B. Bakiz, M. Bazzaoui, M. Ezahri, A. Albourine, A. Benlhachemi, Congo red removal by PANi/Bi2WO6 nanocomposites: kinetic, equilibrium and thermodynamic studies, J. Environ. Chem. Eng., 4 (2016) 3096–3105.
  33. W. Wang, J. Xu, L. Zhang, S. Sun, Bi2WO6/PANI: an efficient visible-light-induced photocatalytic composite, Catal. Today, 224 (2014) 147–153.
  34. C. Li, G. Chen, J. Sun, Y. Feng, J. Liu, H. Dong, Ultrathin nanoflakes constructed erythrocyte-like Bi2WO6 hierarchical architecture via anionic self-regulation strategy for improving photocatalytic activity and gas-sensing property, Appl. Catal., B, 163 (2015) 415–423.
  35. D. Wang, G. Xue, Y. Zhen, F. Fu, D. Li, Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities, J. Mater. Chem., 22 (2012) 4751–4758.
  36. X. Zhao, H. Yang, S. Li, Z. Cui, C. Zhang, Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity, Mater. Res. Bull., 107 (2018) 180–188.
  37. L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu, W. Zhu, A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst, J. Mol. Catal. A: Chem., 252 (2006) 120–124.
  38. A. Kudo, I. Tsuji, H. Kato, AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation, Chem. Commun., 17 (2002) 1958–1959.
  39. Y.-j. Hao, F.-t. Li, F. Chen, M.-j. Chai, R.-h. Liu, X.-j. Wang, In situ one-step combustion synthesis of Bi2O3/Bi2WO6 heterojunctions with notable visible light photocatalytic activities, Mater. Lett., 124 (2014) 1–3.
  40. L. Li, X. Wang, Y. Lan, W. Gu, S. Zhang, Synthesis, photocatalytic and electrocatalytic activities of wormlike GdFeO3 nanoparticles by a glycol-assisted sol–gel process, Ind. Eng. Chem. Res., 52 (2013) 9130–9136.
  41. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal., B, 49 (2004) 1–14.
  42. W.J. Kim, D. Pradhan, B.-K. Min, Y. Sohn, Adsorption/photocatalytic activity and fundamental natures of BiOCl and BiOClxI1−x prepared in water and ethylene glycol environments, and Ag and Au-doping effects, Appl. Catal., B, 147 (2014) 711–725.
  43. C. Chang, L. Zhu, S. Wang, X. Chu, L. Yue, Novel mesoporous graphite carbon nitride/BiOI heterojunction for enhancing photocatalytic performance under visible-light irradiation, ACS Appl. Mater. Interfaces, 6 (2014) 5083–5093.
  44. X. Wang, P. Tian, Y. Lin, L. Li, Hierarchical nanostructures assembled from ultrathin Bi2WO6 nanoflakes and their visiblelight induced photocatalytic property, J. Alloys Compd., 620 (2015) 228–232.
  45. X. Zhao, H. Yang, Z. Cui, X. Wang, Z. Yi, Growth Process and CQDs-modified Bi4Ti3O12 Square Plates with Enhanced Photocatalytic Performance, Micromachines (Basel), 10 (2019) 66.