References
- C.J. Vörösmarty, P.B. McIntyre, M.O. Gessner, D. Dudgeon,
A. Prusevich, P. Green, S. Glidden, S.E. Bunn, C.A. Sullivan,
C. Reidy Liermann, P.M. Davies, Global threats to human water
security and river biodiversity, Nature, 467 (2010) 555–561.
- F. Denisa, F. Anton, A. Ecaterina, Recent Advances in Using
Magnetic Materials for Environmental Applications, Chapter
1, M.G. Alexandru, Ed., Water Purification, Vol. 9, Academic
Press, An imprint of Elsevier, United States, 2017, pp. 1–32.
- M. Barbosa, N.F.F. Moreira, A.R. Ribeiro, M.F.R. Pereira,
A.M.T. Silva, Occurrence and removal of organic micropollutants:
an overview of the watch list of EU Decision
2015/495, Water Res., 94 (2016) 257–279.
- World Water Assessment Programme (UNESCO WWAP), 2017.
- K.R. Kunduru, M. Nazarkovsky, S. Farah, R.P. Pawar, A. Basu,
A.J. Domb, Nanotechnology for Water Purification: Applications
of Nanotechnology Methods in Wastewater Treatment, Chapter
2, M.G. Alexandru, Ed., Water Purification, Vol. 9., Academic
Press, An imprint of Elsevier, 2017, United States, pp. 33–74.
- B. Marek, K. Nalan, L.R. Bernabé, B. Jochen, Series: Sustainable
Water Developments, Vol. 2, Innovative Materials and Methods
for Water Treatment: Solutions for Arsenic and Chromium
Removal, CRC Press/Balkema, Taylor & Francis, United States,
2016.
- X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology
in water and wastewater treatment, Water Res., 47 (2013)
3931–3946.
- C. Dai, Y. Zhou, H. Peng, S. Huang, P. Qin, J. Zhang, Y. Yang,
L. Luo, X. Zhang, Current progress in remediation of chlorinated
volatile organic compounds: a review, J. Ind. Eng. Chem.,
62 (2018) 106–119.
- G. Jiang, M. Lan, Z. Zhang, X. Lv, Z. Lou, X. Xu, F. Dong,
S. Zhang, Identification of Active Hydrogen Species on
Palladium Nanoparticles for an Enhanced Electrocatalytic Hydrodechlorination
of 2,4-Dichlorophenol in Water, Environ. Sci.
Technol., 51 (2017) 7599–7605.
- C. Grégorio, L. Eric, D.W. Lee, M.C. Nadia, Conventional
and non-conventional adsorbents for wastewater Treatment,
Environ. Chem. Lett., 17 (2019) 195–213.
- I. Ali, New generation adsorbents for water treatment, Chem.
Rev., 112 (2012) 5073–5091.
- R. Shalini, U.P. Charles Jr., M. Dinesh, Magnetic magnetite
(Fe3O4) nanoparticle synthesis and applications for lead (Pb2+)
and chromium (Cr6+) removal from water, J. Colloid Interface
Sci., 468 (2016) 334–346.
- S.R. Chowdhury, E.K. Yanful, Arsenic and chromium removal
by mixed magnetite-maghemite nanoparticles and the effect
of phosphate on removal, J. Environ. Manage., 91 (2010)
2238–2247.
- G. Fei, M.L. Meng, Y. Hui, X.Z. Bao, Effective removal of heavy
metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by
polymer-modified magnetic nanoparticles, J. Hazard. Mater.,
211–212 (2012) 366–372.
- L.B. Tahar, M.H. Oueslati, M.J.A. Abualreish, Synthesis of
magnetite derivatives nanoparticles and their application
for the removal of chromium (VI) from aqueous solutions,
J. Colloid Interface Sci., 512 (2018) 115–126.
- L.B. Tahar, M.H. Oueslati, G. Bilel, A Comparative study of two
new CoZn nanoferrites: characterization, magnetic properties,
and efficiency for the removal of hexavalent chromium from
wastewaters, Desal. Wat. Treat., 144 (2019) 243–256.
- X’Pert HighScore Plus, V 2.0, PANalytical B.V. Almelo, The
Netherlands, 2003.
- G.K. Williamson, W.H. Hall, X-ray line broadening from filed
aluminum and wolfram, Acta Metall., 1 (1953) 22–31.
- J. Smit, H.P.J. Wijn, Ferrites, Philips Technical Library,
Netherlands, 1959.
- L.B. Tahar, H. Basti, F. Herbst, L.S. Smiri, J.P. Quisefit,
N. Yaacoub, J.M. Grenèche, S. Ammar, Co1-xZnxFe2O4 (0 ≤ x ≤ 1)
nanocrystalline solid solution prepared by the polyol method:
characterization and magnetic properties, Mater. Res. Bull.,
47 (2012) 2590–2598.
- H.S.C. O’Neill, A. Navrotsky, Simple spinels: crystallographic
parameters, cation radii, lattice energies, and cation distribution,
Am. Mineral., 68 (1983) 181–194.
- R.D. Waldron, Infrared spectra of ferrites, Phys. Rev., 99 (1955)
1727–1735.
- H. Basti, L.B. Tahar, L.S. Smiri, F. Herbst, M.-J. Vaulay, F. Chau,
S. Ammar, S. Benderbous, Catechol derivatives-coated Fe3O4
and γ-Fe2O3 nanoparticles as potential MRI contrast agents,
J. Colloid Interface Sci., 341 (2010) 248–254.
- D. Makovec, M. Drofenik, Non-stoichiometric zinc-ferrite spinel
nanoparticles, J. Nanopart. Res., 10 (2008) 131–141.
- M. Artus, L.B. Tahar, F. Herbst, L. Smiri, F. Villain, N. Yaacoub,
J.M. Grenèche, S. Ammar, F. Fiévet, Size-dependent magnetic
properties of CoFe2O4 nanoparticles prepared in polyol, J. Phys.
Condens. Matter., 23 (2011) 506001 (9 pp).
- D. Cangussu, W.C. Nunes, H.L. da Silva Corrêa, W.A. de
Almeida Macedo, M. Knobel, O.L. Alves, A.G.S. Filho,
I.O. Mazali, γ-Fe2O3 nanoparticles dispersed in porous Vycor
glass: a magnetically diluted integrated system, J. Appl. Phys.,
105 (2009) 013901 (9 pp).
- J.M. Vargas, L.M. Socolovsky, M. Knobel, D. Zanchet, Dipolar
interaction and size effects in powder samples of colloidal iron
oxide nanoparticles, Nanotechnology, 16 (2005) 285–290.
- J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis,
E. Devlin, A. Kostikas, Size-dependent magnetic properties of
MnFe2O4 fine particles synthesized by coprecipitation, Phys.
Rev. B: Condens. Matter, 54 (1996) 9288–9296.
- D. Zhang, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis,
Magnetization temperature dependence in iron nanoparticles,
Phys. Rev. B: Condens. Matter, 58 (1998) 14167–14170.
- L. Chao, J.R. Adam, Z.J. Zhang, Synthesis of magnetic
spinel ferrite CoFe2O4 nanoparticles from ferric salt and
characterization of the size-dependent superparamagnetic properties,
Pure Appl. Chem., 72 (2000) 37–45.
- S. Qing, Z.J. Zhang, Correlation between spin-orbital coupling
and the superparamagnetic properties in magnetite and cobalt
ferrite spinel nanocrystals, J. Phys. Chem. B, 110 (2006)
11205–11209.
- R. Gong, J. Ye, W. Dai, X. Yan, J. Hu, S. Li, H. Huang, Adsorptive
removal of methyl orange and methylene blue from aqueous
solution with finger-citron-residue-based activated carbon,
Ind. Eng. Chem. Res., 52 (2013) 14297–14303.
- Y.S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H.M.F. Freundlich, Über die adsorption in lösungen, Ind. Eng.
Chem. Fundam., 57 (1906) 385–470.
- A.B. Ali, A. Mehdi, G. Gholamreza, N. Jaafarzadeh, B. Zeynab,
Adsorption of chromium(VI) from saline wastewater using
spent tea-supported magnetite nanoparticle, Desal. Wat. Treat.,
57 (2016) 1–13.
- G. Dönmez, Z. Aksu, Removal of chromium(VI) from saline
wastewaters by Dunaliella species, Process Biochem., 38 (2002)
751–762.
- A.H. Meena, Y. Arai, Effects of common groundwater ions
on chromate removal by magnetite: importance of chromate
adsorption, Geochem. Trans., 17 (2016) 1–13.
- H. Jing, C. Guohua, M.C.L. Irene, Removal and recovery of
Cr(VI) from wastewater by maghemite nanoparticles, Water
Res., 39 (2005) 4528–4536.
- P.H. Riege, Electrochemistry, Springer Science & Business Media,
1994, p. 177.
- T.J. Daou, S. Begin-Colin, J.M. Grenèche, F. Thomas, A. Derory,
P. Bernhardt, P. Legaré, G. Pourroy, Phosphate adsorption
properties of magnetite-based nanoparticles, Chem. Mater.,
19 (2007) 4494–4505.
- W. Zhang, P. Singh, E. Paling, S. Delides, Arsenic removal from
contaminated water by natural iron ores, Miner. Eng., 17 (2004)
517–524.
- W.T. Dudley, M.T. Norhayati, The influence of a smectite clay on
the hydrolysis of iron(III), Colloids Surf., 60 (1991) 369–398.
- S. Asuha, B. Suyala, S. Zhao, Porous structure and Cr(VI)
removal abilities of Fe3O4 prepared from Fe–urea complex,
Mater. Chem. Phys., 129 (2011) 483–487.
- Y. Cantu, A. Remes, A. Reyna, D. Martinez, J. Villarreal, H. Ramos,
S. Trevino, C. Tamez, A. Martinez, T. Eubanks, J.G. Parsons,
Thermodynamics, kinetics, and activation energy studies of
the sorption of chromium(III) and chromium(VI) to a Mn3O4
nanomaterial, Chem. Eng. J., 254 (2014) 374–383.
- J. Hu, G. Chen, I.M.C. Lo, Selective removal of heavy metals
from industrial wastewater using maghemite nanoparticle:
performance and mechanisms, J. Environ. Eng., 132 (2006)
709–715.
- V. Srivastava, T. Kohout, M. Sillanpää, Potential of cobalt
ferrite nanoparticles (CoFe2O4) for remediation of hexavalent
chromium from synthetic and printing press wastewater,
J. Environ. Chem. Eng., 4 (2016) 2922–2932.
- W. Qiu, D. Yang, J. Xu, B. Hong, H. Jin, D. Jin, X. Peng, J. Li,
H. Ge, X. Wang, Efficient removal of Cr(VI) by magnetically
separable CoFe2O4/activated carbon composite, J. Alloys
Compd., 678 (2016) 179–184.
- J. Hu, I.M. Lo, G. Chen, Fast removal and recovery of Cr(VI)
using surface-modified jacobsite (MnFe2O4) nanoparticles,
Langmuir, 21 (2005) 11173–11179.
- P.L. Hariani, F. Riyanti, Magnetic CuFe2O4 nanoparticles for
adsorption of Cr(VI) from aqueous solution, Adv. Mater. Res.,
896 (2014) 104–107.
- S. Agrawal, N.B. Singh, Removal of toxic hexavalent chromium
from aqueous solution by nickel ferrite-polyaniline
nanocomposite, Desal. Wat. Treat., 57 (2016) 17757–17766.
- European Commission DG ENV, E3 Project ENV.E.3/
ETU/2000/0058, Heavy Metals in Waste Final Report, February
2002.