References

  1. C.J. Vörösmarty, P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S.E. Bunn, C.A. Sullivan, C. Reidy Liermann, P.M. Davies, Global threats to human water security and river biodiversity, Nature, 467 (2010) 555–561.
  2. F. Denisa, F. Anton, A. Ecaterina, Recent Advances in Using Magnetic Materials for Environmental Applications, Chapter 1, M.G. Alexandru, Ed., Water Purification, Vol. 9, Academic Press, An imprint of Elsevier, United States, 2017, pp. 1–32.
  3. M. Barbosa, N.F.F. Moreira, A.R. Ribeiro, M.F.R. Pereira, A.M.T. Silva, Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495, Water Res., 94 (2016) 257–279.
  4. World Water Assessment Programme (UNESCO WWAP), 2017.
  5. K.R. Kunduru, M. Nazarkovsky, S. Farah, R.P. Pawar, A. Basu, A.J. Domb, Nanotechnology for Water Purification: Applications of Nanotechnology Methods in Wastewater Treatment, Chapter 2, M.G. Alexandru, Ed., Water Purification, Vol. 9., Academic Press, An imprint of Elsevier, 2017, United States, pp. 33–74.
  6. B. Marek, K. Nalan, L.R. Bernabé, B. Jochen, Series: Sustainable Water Developments, Vol. 2, Innovative Materials and Methods for Water Treatment: Solutions for Arsenic and Chromium Removal, CRC Press/Balkema, Taylor & Francis, United States, 2016.
  7. X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res., 47 (2013) 3931–3946.
  8. C. Dai, Y. Zhou, H. Peng, S. Huang, P. Qin, J. Zhang, Y. Yang, L. Luo, X. Zhang, Current progress in remediation of chlorinated volatile organic compounds: a review, J. Ind. Eng. Chem., 62 (2018) 106–119.
  9. G. Jiang, M. Lan, Z. Zhang, X. Lv, Z. Lou, X. Xu, F. Dong, S. Zhang, Identification of Active Hydrogen Species on Palladium Nanoparticles for an Enhanced Electrocatalytic Hydrodechlorination of 2,4-Dichlorophenol in Water, Environ. Sci. Technol., 51 (2017) 7599–7605.
  10. C. Grégorio, L. Eric, D.W. Lee, M.C. Nadia, Conventional and non-conventional adsorbents for wastewater Treatment, Environ. Chem. Lett., 17 (2019) 195–213.
  11. I. Ali, New generation adsorbents for water treatment, Chem. Rev., 112 (2012) 5073–5091.
  12. R. Shalini, U.P. Charles Jr., M. Dinesh, Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water, J. Colloid Interface Sci., 468 (2016) 334–346.
  13. S.R. Chowdhury, E.K. Yanful, Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal, J. Environ. Manage., 91 (2010) 2238–2247.
  14. G. Fei, M.L. Meng, Y. Hui, X.Z. Bao, Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles, J. Hazard. Mater., 211–212 (2012) 366–372.
  15. L.B. Tahar, M.H. Oueslati, M.J.A. Abualreish, Synthesis of magnetite derivatives nanoparticles and their application for the removal of chromium (VI) from aqueous solutions, J. Colloid Interface Sci., 512 (2018) 115–126.
  16. L.B. Tahar, M.H. Oueslati, G. Bilel, A Comparative study of two new CoZn nanoferrites: characterization, magnetic properties, and efficiency for the removal of hexavalent chromium from wastewaters, Desal. Wat. Treat., 144 (2019) 243–256.
  17. X’Pert HighScore Plus, V 2.0, PANalytical B.V. Almelo, The Netherlands, 2003.
  18. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminum and wolfram, Acta Metall., 1 (1953) 22–31.
  19. J. Smit, H.P.J. Wijn, Ferrites, Philips Technical Library, Netherlands, 1959.
  20. L.B. Tahar, H. Basti, F. Herbst, L.S. Smiri, J.P. Quisefit, N. Yaacoub, J.M. Grenèche, S. Ammar, Co1-xZnxFe2O4 (0 ≤ x ≤ 1) nanocrystalline solid solution prepared by the polyol method: characterization and magnetic properties, Mater. Res. Bull., 47 (2012) 2590–2598.
  21. H.S.C. O’Neill, A. Navrotsky, Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution, Am. Mineral., 68 (1983) 181–194.
  22. R.D. Waldron, Infrared spectra of ferrites, Phys. Rev., 99 (1955) 1727–1735.
  23. H. Basti, L.B. Tahar, L.S. Smiri, F. Herbst, M.-J. Vaulay, F. Chau, S. Ammar, S. Benderbous, Catechol derivatives-coated Fe3O4 and γ-Fe2O3 nanoparticles as potential MRI contrast agents, J. Colloid Interface Sci., 341 (2010) 248–254.
  24. D. Makovec, M. Drofenik, Non-stoichiometric zinc-ferrite spinel nanoparticles, J. Nanopart. Res., 10 (2008) 131–141.
  25. M. Artus, L.B. Tahar, F. Herbst, L. Smiri, F. Villain, N. Yaacoub, J.M. Grenèche, S. Ammar, F. Fiévet, Size-dependent magnetic properties of CoFe2O4 nanoparticles prepared in polyol, J. Phys. Condens. Matter., 23 (2011) 506001 (9 pp).
  26. D. Cangussu, W.C. Nunes, H.L. da Silva Corrêa, W.A. de Almeida Macedo, M. Knobel, O.L. Alves, A.G.S. Filho, I.O. Mazali, γ-Fe2O3 nanoparticles dispersed in porous Vycor glass: a magnetically diluted integrated system, J. Appl. Phys., 105 (2009) 013901 (9 pp).
  27. J.M. Vargas, L.M. Socolovsky, M. Knobel, D. Zanchet, Dipolar interaction and size effects in powder samples of colloidal iron oxide nanoparticles, Nanotechnology, 16 (2005) 285–290.
  28. J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, E. Devlin, A. Kostikas, Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation, Phys. Rev. B: Condens. Matter, 54 (1996) 9288–9296.
  29. D. Zhang, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis, Magnetization temperature dependence in iron nanoparticles, Phys. Rev. B: Condens. Matter, 58 (1998) 14167–14170.
  30. L. Chao, J.R. Adam, Z.J. Zhang, Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties, Pure Appl. Chem., 72 (2000) 37–45.
  31. S. Qing, Z.J. Zhang, Correlation between spin-orbital coupling and the superparamagnetic properties in magnetite and cobalt ferrite spinel nanocrystals, J. Phys. Chem. B, 110 (2006) 11205–11209.
  32. R. Gong, J. Ye, W. Dai, X. Yan, J. Hu, S. Li, H. Huang, Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon, Ind. Eng. Chem. Res., 52 (2013) 14297–14303.
  33. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  34. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  35. H.M.F. Freundlich, Über die adsorption in lösungen, Ind. Eng. Chem. Fundam., 57 (1906) 385–470.
  36. A.B. Ali, A. Mehdi, G. Gholamreza, N. Jaafarzadeh, B. Zeynab, Adsorption of chromium(VI) from saline wastewater using spent tea-supported magnetite nanoparticle, Desal. Wat. Treat., 57 (2016) 1–13.
  37. G. Dönmez, Z. Aksu, Removal of chromium(VI) from saline wastewaters by Dunaliella species, Process Biochem., 38 (2002) 751–762.
  38. A.H. Meena, Y. Arai, Effects of common groundwater ions on chromate removal by magnetite: importance of chromate adsorption, Geochem. Trans., 17 (2016) 1–13.
  39. H. Jing, C. Guohua, M.C.L. Irene, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles, Water Res., 39 (2005) 4528–4536.
  40. P.H. Riege, Electrochemistry, Springer Science & Business Media, 1994, p. 177.
  41. T.J. Daou, S. Begin-Colin, J.M. Grenèche, F. Thomas, A. Derory, P. Bernhardt, P. Legaré, G. Pourroy, Phosphate adsorption properties of magnetite-based nanoparticles, Chem. Mater., 19 (2007) 4494–4505.
  42. W. Zhang, P. Singh, E. Paling, S. Delides, Arsenic removal from contaminated water by natural iron ores, Miner. Eng., 17 (2004) 517–524.
  43. W.T. Dudley, M.T. Norhayati, The influence of a smectite clay on the hydrolysis of iron(III), Colloids Surf., 60 (1991) 369–398.
  44. S. Asuha, B. Suyala, S. Zhao, Porous structure and Cr(VI) removal abilities of Fe3O4 prepared from Fe–urea complex, Mater. Chem. Phys., 129 (2011) 483–487.
  45. Y. Cantu, A. Remes, A. Reyna, D. Martinez, J. Villarreal, H. Ramos, S. Trevino, C. Tamez, A. Martinez, T. Eubanks, J.G. Parsons, Thermodynamics, kinetics, and activation energy studies of the sorption of chromium(III) and chromium(VI) to a Mn3O4 nanomaterial, Chem. Eng. J., 254 (2014) 374–383.
  46. J. Hu, G. Chen, I.M.C. Lo, Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms, J. Environ. Eng., 132 (2006) 709–715.
  47. V. Srivastava, T. Kohout, M. Sillanpää, Potential of cobalt ferrite nanoparticles (CoFe2O4) for remediation of hexavalent chromium from synthetic and printing press wastewater, J. Environ. Chem. Eng., 4 (2016) 2922–2932.
  48. W. Qiu, D. Yang, J. Xu, B. Hong, H. Jin, D. Jin, X. Peng, J. Li, H. Ge, X. Wang, Efficient removal of Cr(VI) by magnetically separable CoFe2O4/activated carbon composite, J. Alloys Compd., 678 (2016) 179–184.
  49. J. Hu, I.M. Lo, G. Chen, Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles, Langmuir, 21 (2005) 11173–11179.
  50. P.L. Hariani, F. Riyanti, Magnetic CuFe2O4 nanoparticles for adsorption of Cr(VI) from aqueous solution, Adv. Mater. Res., 896 (2014) 104–107.
  51. S. Agrawal, N.B. Singh, Removal of toxic hexavalent chromium from aqueous solution by nickel ferrite-polyaniline nanocomposite, Desal. Wat. Treat., 57 (2016) 17757–17766.
  52. European Commission DG ENV, E3 Project ENV.E.3/ ETU/2000/0058, Heavy Metals in Waste Final Report, February 2002.