References

  1. H. Dong, G. Chen, J. Sun, C. Li, Y. Hu, Z. Han, Whole-visible-light absorption of a mixed-valence silver vanadate semiconductor stemming from an assistant effect of d-d transition, Inorg. Chem., 54 (2015) 11826–11830.
  2. C. Li, S. Yu, H. Dong, C. Liu, H. Wu, H. Che, G. Chen, Z-scheme mesoporous photocatalyst constructed by modification of Sn3O4 nanoclusters on g-C3N4 nanosheets with improved photocatalytic performance and mechanism insight, Appl. Catal., B, 238 (2018) 284–293.
  3. H. Dong, J. Sun, G. Chen, C. Li, Y. Hu, C. Lv, An advanced Ag-based photocatalyst Ag2Ta4O11 with outstanding activity, durability and universality for removing organic dyes, Phys. Chem. Chem. Phys., 16 (2014) 23915–23921.
  4. H. Wu, C. Li, H. Che, H. Hu, W. Hu, C. Liu, J. Ai, H. Dong, Decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on g-C3N4 to construct Z-scheme system for improving photocatalytic performance, Appl. Surf. Sci., 440 (2018) 308–319.
  5. Z. Zhu, P. Huo, Z. Lu, Y. Yan, Z. Liu, W. Shi, C. Li, H. Dong, Fabrication of magnetically recoverable photocatalysts using g-C3N4 for effective separation of charge carriers through like-Z-scheme mechanism with Fe3O4 mediator, Chem. Eng. J., 331 (2018) 615–625.
  6. H. Che, C. Liu, W. Hu, H. Hu, J. Li, J. Dou, W. Shi, C. Li, H. Dong, NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme g-C3N4/Bi2WO6 heterojunctions, Catal. Sci. Technol., 8 (2018) 622–631.
  7. H. Dong, G. Chen, J. Sun, Y. Feng, C. Li, C. Lv, Stability, durability and regeneration ability of a novel Ag-based photocatalyst, Ag2Nb4O11, Chem. Commun., 50 (2014) 6596–6599.
  8. Z. Zhu, Z. Lu, D. Wang, X. Tang, Y. Yan, W. Shi, Y. Wang, N. Gao, X. Yao, H. Dong, Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity, Appl. Catal., B, 182 (2016) 115–122.
  9. H. Dong, G. Chen, J. Sun, Y. Feng, C. Li, G. Xiong, C. Lv, Highly-effective photocatalytic properties and interfacial transfer efficiencies of charge carriers for the novel Ag2CO3/AgX heterojunctions achieved by surface modification, Dalton Trans., 43 (2014) 7282–7289.
  10. Z. Lu, X. Zhao, Z. Zhu, M. Song, N. Gao, Y. Wang, Z. Ma, W. Shi, Y. Yan, H. Dong, A novel hollow capsule-like recyclable functional ZnO/C/Fe3O4 endowed with three-dimensional oriented recognition ability for selectively photodegrading danofloxacin mesylate, Catal. Sci. Technol., 6 (2016) 6513–6524.
  11. C. Song, Y. Feng, W. Shi, C. Liu, Fabrication and mechanism of a novel direct solid-state: Z-scheme photocatalyst CdS/BiOI under visible light, CrystEngComm, 18 (2016) 7796–7804.
  12. C. Liu, P. Li, G. Wu, B. Luo, S. Lin, A. Ren, W. Shi, Enhanced photoelectrochemical and photocatalytic activity by Cu2O/SrTiO3 p–n heterojunction via a facile deposition–precipitation technique, RSC Adv., 5 (2015) 33938–33945.
  13. C. Li, S. Yu, H. Dong, Y. Wang, H. Wu, X. Zhang, G. Chen, C. Liu, Mesoporous ferriferrous oxide nanoreactors modified on graphitic carbon nitride towards improvement of physical, photoelectrochemical properties and photocatalytic performance, J. Colloid Interface Sci., 531 (2018) 331–342.
  14. H. Dong, G. Chen, J. Sun, C. Li, C. Lv, Y. Hu, Durability, inactivation and regeneration of silver tetratantalate in photocatalytic H2 evolution, Phys. Chem. Chem. Phys., 17 (2015) 795–799.
  15. Z. Lu, Z. Zhu, D. Wang, Z. Ma, W. Shi, Y. Yan, X. Zhao, H. Dong, L. Yang, Z. Hua, Specific oriented recognition of a new stable ICTX@Mfa with retrievability for selective photocatalytic degrading of ciprofloxacin, Catal. Sci. Technol., 6 (2016) 1367–1377.
  16. C. Li, S. Yu, Y. Wang, J. Han, H. Dong, G. Chen, Fabrication, physicochemical properties and photocatalytic activity of Ag0.68V2O5 hierarchical architecture assembled by ultrathin nanosheets, J. Taiwan Inst. Chem. Eng., 87 (2018) 272–280.
  17. Z. Lu, X. Zhao, Z. Zhu, Y. Yan, W. Shi, H. Dong, Z. Ma, N. Gao, Y. Wang, H. Huang, Enhanced recyclability, stability, and selectivity of CdS/C@Fe3O4 nanoreactors for orientation photodegradation of ciprofloxacin, Chem. Eur. J., 21 (2015) 18528–18533.
  18. H. Dong, G. Chen, J. Sun, C. Li, Y. Yu, D. Chen, A novel highefficiency visible-light sensitive Ag2CO3 photocatalyst with universal photodegradation performances: simple synthesis, reaction mechanism and first-principles study, Appl. Catal., B, 134–135 (2013) 46–54.
  19. C. Li, G. Chen, J. Sun, H. Dong, Y. Wang, C. Lv, Construction of Bi2WO6 homojunction via QDs self-decoration and its improved separation efficiency of charge carriers and photocatalytic ability, Appl. Catal., B, 160–161 (2014) 383–389.
  20. G. Wu, L. Xiao, W. Gu, W. Shi, D. Jiang, C. Liu, Fabrication and excellent visible-light-driven photodegradation activity for antibiotics of SrTiO3 nanocube coated CdS microsphere heterojunctions, RSC Adv., 6 (2016) 19878–19886.
  21. H. Xu, Y. Jiang, X. Yang, F. Li, A. Li, Y. Liu, J. Zhang, Z. Zhou, L. Ni, Fabricating carbon quantum dots doped ZnIn2S4 nanoflower composites with broad spectrum and enhanced photocatalytic tetracycline hydrochloride degradation, Mater. Res. Bull., 97 (2018) 158–168.
  22. H. Che, L. Liu, G. Che, H. Dong, C. Liu, C. Li, Control of energy band, layer structure and vacancy defect of graphitic carbon nitride by intercalated hydrogen bond effect of NO3 – toward improving photocatalytic performance, Chem. Eng. J., 357 (2019) 209–219.
  23. R. Jiang, D. Wu, G. Lu, Z. Yan, J. Liu, R. Zhou, M. Nkoom, Fabrication of Fe3O4 quantum dots modified BiOCl/BiVO4 p-n heterojunction to enhance photocatalytic activity for removing broad-spectrum antibiotics under visible light, J. Taiwan Inst. Chem. Eng., 96 (2019) 681–690.
  24. F. He, Z. Lu, M. Song, X. Liu, H. Tang, P. Huo, W. Fan, H. Dong, X. Wu, S. Han, Selective reduction of Cu2+ with simultaneous degradation of tetracycline by the dual channels ion imprinted POPD-CoFe2O4 heterojunction photocatalyst, Chem. Eng. J., 360 (2019) 750–761.
  25. C. Li, S. Yu, X. Zhang, Y. Wang, C. Liu, G. Chen, H. Dong, Insight into photocatalytic activity, universality and mechanism of copper/chlorine surface dual-doped graphitic carbon nitride for degrading various organic pollutants in water, J. Colloid Interface Sci., 538 (2019) 462–473.
  26. E.N. El Qada, S.J. Allen, G.M. Walker, Adsorption of basic dyes from aqueous solution onto activated carbons, Chem. Eng. J., 135 (2008) 174–184.
  27. Z. Lu, J. Peng, M. Song, Y. Liu, X. Liu, P. Huo, H. Dong, S. Yuan, Z. Ma, S. Han, Improved recyclability and selectivity of environment-friendly MFA-based heterojunction imprinted photocatalyst for secondary pollution free tetracycline orientation degradation, Chem. Eng. J., 360 (2019) 1262–1276.
  28. C. Visvanathan, R. Ben Aim, K. Parameshwaran, Membrane separation bioreactors for wastewater treatment, Crit. Rev. Env. Sci. Technol., 30 (2000) 1–48.
  29. J.H. Mo, Y.H. Lee, J. Kim, J.Y. Jeong, J. Jegal, Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse, Dyes Pigm., 76 (2008) 429–434.
  30. M. Fathizadeh, W.L. Xu, F. Zhou, Y. Yoon, M. Yu, Graphene oxide: a novel 2-dimensional material in membrane separation for water purification, Adv. Mater. Interfaces, 4 (2017) 1–16.
  31. Z. Lu, Z. Yu, J. Dong, M. Song, Y. Liu, X. Liu, Z. Ma, H. Su, Y. Yan, P. Huo, Facile microwave synthesis of a Z-scheme imprinted ZnFe2O4/Ag/PEDOT with the specific recognition ability towards improving photocatalytic activity and selectivity for tetracycline, Chem. Eng. J., 337 (2018) 228–241.
  32. B. Ranc, P. Faure, V. Croze, M.O. Simonnot, Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): a review, J. Hazard. Mater., 312 (2016) 280–297.
  33. C. Li, G. Chen, J. Sun, Y. Feng, J. Liu, H. Dong, Ultrathin nanoflakes constructed erythrocyte-like Bi2WO6 hierarchical architecture via anionic self-regulation strategy for improving photocatalytic activity and gas-sensing property, Appl. Catal., B, 163 (2015) 415–423.
  34. M.L. Marin, L. Santos-Juanes, A. Arques, A.M. Amat, M.A. Miranda, Organic photocatalysts for the oxidation of pollutants and model compounds, Chem. Rev., 112 (2012) 1710–1750.
  35. H. Che, G. Che, P. Zhou, C. Liu, H. Dong, Yeast-derived carbon sphere as a bridge of charge carriers towards to enhanced photocatalytic activity of 2D/2D Cu2WS4/g-C3N4 heterojunction, J. Colloid Interface Sci., 546 (2019) 262–275.
  36. C. Li, G. Chen, J. Sun, J. Rao, Z. Han, Y. Hu, W. Xing, C. Zhang, Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water, Appl. Catal., B, 188 (2016) 39–47.
  37. Y. Jiang, P. Liu, Y. Chen, Z. Zhou, H. Yang, Y. Hong, F. Li, L. Ni, Y. Yan, D. Gregory, Construction of stable Ta3N5/g-C3N4 metal/non-metal nitride hybrids with enhanced visible-light photocatalysis, Appl. Surf. Sci., 391 (2017) 392–403.
  38. X. Zhao, Z. Lu, M. Wei, M. Zhang, H. Dong, C. Yi, R. Ji, Y. Yan, Synergetic effect of carbon sphere derived from yeast with magnetism and cobalt oxide nanochains towards improving photodegradation activity for various pollutants, Appl. Catal., B, 220 (2018) 137–147.
  39. C. Li, G. Chen, J. Sun, J. Rao, Z. Han, Y. Hu, Y. Zhou, A novel mesoporous single-crystal-like Bi2WO6 with enhanced photocatalytic activity for pollutants degradation and oxygen production, ACS Appl. Mater. Interfaces, 7 (2015) 25716–25724.
  40. Z. Zhu, X. Tang, S. Kang, P. Huo, M. Song, W. Shi, Z. Lu, Y. Yan, Constructing of the magnetic photocatalytic nanoreactor MS@ FCN for cascade catalytic degrading of tetracycline, J. Phys. Chem. C, 120 (2016) 27250–27258.
  41. H. Che, J. Chen, K. Huang, W. Hu, H. Hu, X. Liu, G. Che, C. Liu, W. Shi, Construction of SrTiO3/Bi2O3 heterojunction towards to improved separation efficiency of charge carriers and photocatalytic activity under visible light, J. Alloys Compd., 688 (2016) 882–890.
  42. J. Chen, H. Che, K. Huang, C. Liu, W. Shi, Fabrication of a ternary plasmonic photocatalyst CQDs/Ag/Ag2O to harness charge flow for photocatalytic elimination of pollutants, Appl. Catal., B, 192 (2016) 134–144.
  43. Z. Zhu, Y. Yu, H. Dong, Z. Liu, C. Li, P. Huo, Y. Yan, Intercalation effect of attapulgite in g-C3N4 modified with Fe3O4 quantum dots to enhance photocatalytic activity for removing 2-mercaptobenzothiazole under visible light, ACS Sustainable Chem. Eng., 5 (2017) 10614–10623.
  44. Z. Zhu, W. Fan, Z. Liu, Y. Yu, H. Dong, P. Huo, Y. Yan, Fabrication of the metal-free biochar-based graphitic carbon nitride for improved 2-mercaptobenzothiazole degradation activity, J. Photochem. Photobiol., A, 358 (2018) 284–293.
  45. C. Liu, J. Chen, H. Che, K. Huang, P.A. Charpentier, W.Z. Xu, W. Shi, H. Dong, Construction and enhanced photocatalytic activities of a hydrogenated TiO2 nanobelt coated with CDs/MoS2 nanosheets, RSC Adv., 7 (2017) 8429–8442.
  46. J. Tian, Z, Wu, Z. Liu, C. Yu, K. Yang, L. Zhu, W. Huang, Y. Zhou, Low-cost and efficient visible-light-driven CaMg(CO3)2@Ag2CO3 microspheres fabricated via an ion exchange route, Chin. J. Catal., 38 (2017) 1899–1908
  47. J. Tian, R. Liu, Z. Liu, C. Yu, M. Liu, Boosting the photocatalytic performance of Ag2CO3 crystals in phenol degradation via coupling with trace N-CQDs, Chin. J. Catal., 38 (2017) 1999–2008.
  48. D. Zeng, K. Yang, C. Yu, F. Chen, X. Li, Z. Wu, H. Liu, Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance, Appl. Catal., B, 237 (2018) 449–463.
  49. P. Zhou, Z. Zhang, L. Jiang, C. Yu, K. Lv, J. Sun, S. Wang, A versatile cobalt catalyst for the reductive amination of carbonyl compounds with nitro compounds by transfer hydrogenation, Appl. Catal., B, 210 (2017) 522–532.
  50. H. Zhang, G. Chen, D.W. Bahnemann, Photoelectrocatalytic materials for environmental applications, J. Mater. Chem., 19 (2009) 5089–5121.
  51. C. Yu, W. Zhou, L. Zhu, G. Li, K. Yang, R. Jin, Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis, Appl. Catal., B, 184 (2016) 1–11.
  52. C. Li, Y. Xu, W. Tu, G. Chen, R. Xu, Metal-free photocatalysts for various applications in energy conversion and environmental purification, Green Chem., 19 (2017) 882–899.
  53. C. Li, Y. Du, D. Wang, S. Yin, W. Tu, Z. Chen, M. Kraft, G. Chen, R. Xu, Unique P–Co–N surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2 evolution, Adv. Funct. Mater., 27 (2017) 1–8.
  54. C. Liu, G. Wu, J. Chen, K. Huang, W. Shi, Fabrication of a visiblelight- driven photocatalyst and degradation of tetracycline based on the photoinduced interfacial charge transfer of SrTiO3/Fe2O3 nanowires, New J. Chem., 40 (2016) 5198–5208.
  55. G. Zhang, C. Ni, L. Liu, G. Zhao, F. Fina, J.T.S. Irvine, Macromesoporous resorcinol–formaldehyde polymer resins as amorphous metal-free visible light photocatalysts, J. Mater. Chem. A, 3 (2015) 15413–15419.
  56. H. Che, G. Che, H. Dong, W. Hu, H. Hu, C. Liu, C. Li, Fabrication of Z-scheme Bi3O4Cl/g-C3N4 2D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic degradation various organic pollutants activity, Appl. Surf. Sci., 455 (2018) 705–716.
  57. Z. Li, G. Wang, C. Liang, A. Zhang, Synthesis of cyclotriphosphazene-containing polymeric nanotubes and their use as metal-free photocatalysts for methylene blue degradation, Appl. Surf. Sci., 347 (2015) 541–547.
  58. C. Li, S. Yu, H. Che, X. Zhang, J. Han, Y. Mao, Y. Wang, C. Liu, H. Dong, Fabrication of Z-scheme heterojunction by anchoring mesoporous γ-Fe2O3 nanospheres on g-C3N4 for degrading tetracycline hydrochloride in water, ACS Sustainable Chem. Eng., 6 (2018) 16437−16447.
  59. G. Zhang, C. Ni, L. Liu, G. Zhao, F. Fina, J.T.S. Irvine, Macromesoporous resorcinol–formaldehyde polymer resins as amorphous metal-free visible light photocatalysts, J. Mater. Chem. A, 3 (2015) 15413–15419.
  60. S. Liu, H. Sun, K. O’Donnell, H.M. Ang, M.O. Tade, S. Wang, Metal-free melem/g-C3N4 hybrid photocatalysts for water treatment, J. Colloid Interface Sci., 464 (2016) 10–17.
  61. S. Yin, J. Han, T. Zhou, R. Xu, Recent progress in g-C3N4 based low cost photocatalytic system: activity enhancement and emerging applications, Catal. Sci. Technol., 5 (2015) 5048–5061.
  62. X. Dong, F. Cheng, Recent development in exfoliated twodimensional g-C3N4 nanosheets for photocatalytic applications, J. Mater. Chem. A, 3 (2015) 23642–23652.
  63. J. Zhang, Y. Chen, X. Wang, Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications, Energy Environ. Sci., 8 (2015) 3092–3108.
  64. N. Zhang, M. Yang, S. Liu, Y. Sun, Y. Xu, Waltzing with the versatile platform of graphene to synthesize composite photocatalysts, Chem. Rev., 115 (2015) 10307–10377.
  65. C. Han, N. Zhang, Y. Xu, Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis, Nano Today, 11 (2016) 351–372.
  66. Q. Quan, X. Lin, N. Zhang, Y. Xu, Graphene and its derivatives as versatile templates for materials synthesis and functional applications, Nanoscale, 9 (2017) 2398–2416.
  67. G. Liao, S. Chen, X. Quan, H. Yu, H. Zhao, Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation, J. Mater. Chem., 22 (2012) 2721–2726.
  68. H.T. Niu, Y. Zhang, Y. Liu, B. Luo, N. Xin, W.D. Shi, MOFsderived Co9S8-embedded graphene/hollow carbon spheres film with macroporous frameworks for hybrid supercapacitors with superior volumetric energy density, J. Mater. Chem. A, 7 (2019) 8503–8509.
  69. S.P. Pitre, C.D. McTiernan, H. Ismaili, J.C. Scaiano, Metalfree photocatalytic radical trifluoromethylation utilizing methylene blue and visible light irradiation, ACS Catal., 4 (2014) 2530–2535.
  70. S.M. Abdel Moneim, T.A. Gad-Allah, M.F. El-Shahat, A.M. Ashmawy, H.S. Ibrahim, Novel application of metal-free graphitic carbon nitride (g-C3N4) in photocatalytic reduction—recovery of silver ions, J. Environ. Chem. Eng., 4 (2016) 4165–4172.
  71. F. Wang, P. Chen, Y. Feng, Z. Xie, Y. Liu, Y. Su, Q. Zhang, Y. Wang, K. Yao, W. Lv, G. Liu, Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin, Appl. Catal., B, 207 (2017) 103–113.
  72. M. Aleksandrzak, W. Kukulka, E. Mijowska, Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis, Appl. Surf. Sci., 398 (2017) 56–62.
  73. C. Li, S. Yu, L. Gu, J. Han, H. Dong, Y. Wang, G. Chen, A new graphitic carbon nitride/horseradish peroxidase hybrid nanobio artificial catalytic system for unselective degradation of persistent phenolic pollutants, Adv. Mater. Interfaces, 5 (2018) Article ID: 201801297.
  74. S. Patnaik, S. Martha, S. Acharya, K.M. Parida, An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications, Inorg. Chem. Front., 3 (2016) 336–347.
  75. Y. Li, Y. Sun, F. Dong, W.K. Ho, Enhancing the photocatalytic activity of bulk g-C3N4 by introducing mesoporous structure and hybridizing with graphene, J. Colloid Interface Sci., 436 (2014) 29–36.
  76. B. Choudhury, P.K. Giri, Isotype heterostructure of bulk and nanosheets of graphitic carbon nitride for efficient visible light photodegradation of methylene blue, RSC Adv., 6 (2016) 24976–24984.
  77. S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light, Adv. Mater., 25 (2013) 2452–2456.
  78. W. Shen, L. Ren, H. Zhou, S. Zhang, W. Fan, Facile one-pot synthesis of bimodal mesoporous carbon nitride and its function as a lipase immobilization support, J. Mater. Chem., 21 (2011) 3890–3894.
  79. S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation, Langmuir, 26 (2010) 3894–3901.
  80. Y. Gong, H. Yu, S. Chen, X. Quan, Constructing metal-free polyimide/g-C3N4 with high photocatalytic activity under visible light irradiation, RSC Adv., 5 (2015) 83225–83231.
  81. P. Qiu, H. Chen, C. Xu, N. Zhou, F. Jiang, X. Wang, Y. Fu, Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst, J. Mater. Chem. A, 3 (2015) 24237–24244.
  82. Y. Cui, J. Huang, X. Fu, X. Wang, Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors, Catal. Sci. Technol., 2 (2012) 1396–1402.
  83. B. Lin, G. Yang, B. Yang, Y. Zhao, Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity, Appl. Catal., B, 198 (2016) 276–285.
  84. X. Bai, L. Wang, R. Zong, Y. Zhu, Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods, J. Phys. Chem. C, 117 (2013) 9952–9961.
  85. M. Tahir, C. Cao, N. Mahmood, F.K. Butt, A. Mahmood, F. Idrees, S. Hussain, M. Tanveer, Z. Ali, I. Aslam, Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties, ACS Appl. Mater. Interfaces, 6 (2014) 1258–1265.
  86. W. Wang, J.C. Yu, Z. Shen, D.K.L. Chan, T. Gu, g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application, Chem. Commun., 50 (2014) 10148–10150.
  87. M. Tahir, C. Cao, F.K. Butt, S. Butt, F. Idrees, Z. Ali, I. Aslam, M. Tanveer, A. Mahmood, N. Mahmood, Large scale production of novel g-C3N4 micro strings with high surface area and versatile photodegradation ability, CrystEngComm, 16 (2014) 1825.
  88. C. Zhou, R. Shi, L. Shang, L. Wu, C. Tung, T. Zhang, Templatefree large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production, Nano Res., 11 (2018) 3462–3468.
  89. G. Dong, K. Zhao, L. Zhang, Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4, Chem. Commun., 48 (2012) 6178–6180.
  90. J. Fang, H. Fan, M. Li, C. Long, Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution, J. Mater. Chem. A, 3 (2015) 13819–13826.
  91. K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Sulfurdoped g-C3N4 with enhanced photocatalytic CO2-reduction performance, Appl. Catal., B, 176–177 (2015) 44–52.
  92. S.N. Guo, Y. Zhu, Y.Y. Yan, Y.L. Min, J.C. Fan, Q.J. Xu, Holey structured graphitic carbon nitride thin sheets with edge oxygen doping via photo-Fenton reaction with enhanced photocatalytic activity, Appl. Catal., B, 185 (2016) 315–321.
  93. S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution, Angew. Chem. Int. Ed., 55 (2016) 1830–1834.
  94. Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen, X. Wang, Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids, Chem. Mater., 22 (2010) 5119–5121.
  95. Z.A. Lan, G. Zhang, X. Wang, A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting, Appl. Catal., B, 192 (2016) 116–125.
  96. G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution, Adv. Mater., 26 (2014) 805–809.
  97. C. Liu, L. Jing, L. He, Y. Luan, C. Li, Phosphate-modified graphitic C3N4 as efficient photocatalyst for degrading colorless pollutants by promoting O2 adsorption, Chem. Commun., 50 (2014) 1999–2001.
  98. H. Zhang, L. Zhao, F. Geng, L.H. Guo, B. Wan, Y. Yang, Carbon dots decorated graphitic carbon nitride as an efficient metalfree photocatalyst for phenol degradation, Appl. Catal., B, 180 (2016) 656–662.
  99. Z. Tong, D. Yang, J. Shi, Y. Nan, Y. Sun, Z. Jiang, Threedimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance, ACS Appl. Mater. Interfaces, 7 (2015) 25693–25701.
  100. L. Ge, C. Han, J. Liu, In situ synthesis and enhanced visible light photocatalytic activities of novel PANI–g-C3N4 composite photocatalysts, J. Mater. Chem., 22 (2012) 11843.
  101. S. Fang, Y. Xia, K. Lv, Q. Li, J. Sun, M. Li, Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4, Appl. Catal., B, 185 (2016) 225–232.
  102. S. Park, S.Y. Kim, J. Oh, S. Park, Y. Shim, Production of metalfree composites composed of graphite oxide and oxidized carbon nitride nanodots and their enhanced photocatalytic performances, Chem. Eur. J., 22 (2016) 5142–5145.
  103. Z. Xiong, L.L. Zhang, J. Ma, X.S. Zhao, Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation, Chem. Commun., 46 (2010) 6099–6101.
  104. Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev., 41 (2012) 782–796.
  105. N. Zhang, Y. Zhang, Y. Xu, Recent progress on graphenebased photocatalysts: current status and future perspectives, Nanoscale, 4 (2012) 5792–5813
  106. Y. Zhang, N. Zhang, Z. Tang, Y. Xu, Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer, ACS Nano, 6 (2012) 9777–9789
  107. K. Lu, N. Zhang, C. Han, F. Li, Z. Chen, Y. Xu, Insight into the origin of boosted photosensitive efficiency of graphene from the cooperative experiment and theory study, J. Phys. Chem. C, 120 (2016) 27091−27103.
  108. M. Yang, N. Zhang, M. Pagliaro, Y. Xu, Artificial photosynthesis over graphene–semiconductor composites. Are we getting better?, Chem. Soc. Rev., 43 (2014) 8240–8254.
  109. L. L. Zhang, Z. Xiong, X.S. Zhao, Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation, ACS Nano, 4 (2010) 7030–7036.
  110. L. Yang, L. Wang, M. Xing, J. Lei, J. Zhang, Silica nanocrystal/graphene composite with improved photoelectric and photocatalytic performance, Appl. Catal., B, 180 (2016) 106–112.
  111. C. Tsang, J. Tobin, J. Xuan, F. Vilela, H. Huang, D. Leung, BTZ-copolymer loaded graphene aerogel as new type Green and metal-free visible light photocatalyst, Appl. Catal., B, 240 (2019) 50–63.
  112. Y. Gong, B. Yang, H. Zhang, X. Zhao, C. Zhu, Graphene oxide enwrapped polyimide composites with efficient photocatalytic activity for 2,4-dichlorophenol degradation under visible light irradiation, Mater. Res. Bull., 112 (2019) 115–123.
  113. Y. Chen, Z.H. Huang, M. Yue, F. Kang, Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity, Nanoscale, 6 (2014) 978–985.
  114. G.M. Neelgund, V.N. Bliznyuk, A. Oki, Photocatalytic activity and NIR laser response of polyaniline conjugated graphene nanocomposite prepared by a novel acid-less method, Appl. Catal., B, 187 (2016) 357–366.
  115. K. Zhu, L. Guo, J. Lin, W. Hao, J. Shang, Y. Jia, L. Chen, S. Jin, W. Wang, X. Chen, Graphene covered SiC powder as advanced photocatalytic material, Appl. Phys. Lett., 100 (2012) 2–6.
  116. Z.R. Tang, Y. Zhang, N. Zhang, Y.-J. Xu, New insight into the enhanced visible light photocatalytic activity over borondoped reduced graphene oxide, Nanoscale, 7 (2015) 7030–7034.
  117. Z. Shen, S. Sun, W. Wang, J. Liu, Z. Liu, J.C. Yu, A black–red phosphorus heterostructure for efficient visible-light-driven photocatalysis, J. Mater. Chem. A, 3 (2015) 3285–3288.
  118. Z. Zhang, D. He, H. Liu, M. Ren, Y. Zhang, J. Qu, N. Lu, J. Guan, X. Yuan, Synthesis of graphene/black phosphorus hybrid with highly stable P-C bond towards the enhancement of photocatalytic activity, Environ. Pollut., 245 (2019) 950–956.
  119. Y. Luo, Y. Heng, X. Dai, W. Chen, J. Li, Preparation and photocatalytic ability of highly defective carbon nanotubes, J. Solid State Chem., 182 (2009) 2521–2525.
  120. Z. Shen, Z. Hu, W. Wang, S.F. Lee, D.K.L. Chan, Y. Li, T. Gu, J.C. Yu, Crystalline phosphorus fibers: controllable synthesis and visible-light-driven photocatalytic activity, Nanoscale, 6 (2014) 14163–14167.
  121. M. Zhang, J. Xu, R. Zong, Y. Zhu, Enhancement of visible light photocatalytic activities via porous structure of g-C3N4, Appl. Catal., B, 147 (2014) 229–235.
  122. J. Di, J. Xiong, H. Li, Z. Liu, Ultrathin 2D photocatalysts: electronic-structure tailoring, hybridization, and applications, Adv. Mater., 30 (2018) 1704548.
  123. Y. Liu, H.T. Niu, X.Y. Cai, W.D. Shi, In-situ construction of hierarchical CdS/MoS2 microboxes for enhanced visiblelight photocatalytic H2 production, Chem. Eng. J., 339 (2018) 117–124.
  124. L. Jing, Y. Xu, M. Xie, J. Liu, J. Deng, L. Huang, H. Xu, H. Li, Three dimensional polyaniline/MgIn2S4 nanoflower photocatalysts accelerated interfacial charge transfer for the photoreduction of Cr(VI), photodegradation of organic pollution and photocatalytic H2 production, Chem. Eng. J., 360 (2019) 1601–1612.