References

  1. C. Rousselle, J.N. Ormsby, B. Schaefer, A. Lampen, T. Platzek, K. Hirsch-Ernst, M. Warholm, A. Oskarsson, P.J. Nielsen, M.L. Holmer, C. Emond, Meeting report: international workshop on endocrine disruptors: exposure and potential impact on consumers health, Regul. Toxicol. Pharm., 65 (2013) 7–11.
  2. J.D. Meeker, Exposure to environmental endocrine disrupting compounds and men’s health, Maturitas, 66 (2010) 236–241.
  3. M. Mezcua, M.A. Martínez-Uroz, M.M. Gómez-Ramos, M.J. Gómez, J.M. Navas, A.R. Fernández-Alba, Analysis of synthetic endocrine-disrupting chemicals in food: a review, Talanta, 100 (2012) 90–106.
  4. C.D. Bope, A. Nalaparaju, C.K. Ng, Y. Cheng, L. Lu, Molecular simulation on the interaction of Ethinylestradiol (EE2) with polymer membranes in wastewater purification, Mol. Simul., 44 (2018) 638–647.
  5. Z. Liu, N. Wardenier, S. Hosseinzadeh, Y. Verheust, P.-J. De Buyck, M. Chys, A. Nikiforov, C. Leys, S. Van Hulle, Degradation of bisphenol A by combining ozone with UV and H2O2 in aqueous solutions: mechanism and optimization, Clean Technol. Environ. Policy, 20 (2018) 2109–2118.
  6. B. Huang, D. Xiong, H. He, X. Li, W. Sun, X. Pan, Characteristics and bioaccumulation of progestogens, androgens, estrogens, and phenols in Erhai Lake catchment, Yunnan, China, Environ. Eng. Sci., 34 (2017) 321–332.
  7. P. Shao, Z. Ren, J. Tian, S. Gao, X. Luo, W. Shi, B. Yan, J. Li, F. Cui, Silica hydrogel-mediated dissolution-recrystallization strategy for synthesis of ultrathin α-Fe2O3 nanosheets with highly exposed (1 1 0) facets: a superior photocatalyst for degradation of bisphenol S, Chem. Eng. J., 323 (2017) 64–73.
  8. J. Moreman, O. Lee, M. Trznadel, A. David, T. Kudoh, C.R. Tyler, Acute toxicity, teratogenic, and estrogenic effects of bisphenol A and its alternative replacements bisphenol S, bisphenol F, and bisphenol AF in zebrafish embryo-larvae, Environ. Sci. Technol., 51 (2017) 12796–12805.
  9. G. Cao, J. Lu, G. Wang, Photolysis kinetics and influencing factors of bisphenol S in aqueous solutions, J. Environ. Sci., 24 (2012) 846–851.
  10. G. Cao, R. He, Z. Cai, J. Liu, Photolysis of bisphenol S in aqueous solutions and the effects of different surfactants, React. Kinet. Mech. Catal., 109 (2013) 259–271.
  11. M.-Y. Chen, M. Ike, M. Fujita, Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols, Environ. Toxicol., 17 (2002) 80–86.
  12. P. Viñas, N. Campillo, N. Martínez-Castillo, M. Hernández-Córdoba, Comparison of two derivatization-based methods for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol A, bisphenol S and biphenol migrated from food cans, Anal. Bioanal. Chem., 397 (2010) 115–125.
  13. H.-B. Moon, S.-P. Yoon, R.-H. Jung, M. Choi, Wastewater treatment plants (WWTPs) as a source of sediment contamination by toxic organic pollutants and fecal sterols in a semi-enclosed bay in Korea, Chemosphere, 73 (2008) 880–889.
  14. F. Ghanbari, M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants, Chem. Eng. J., 310 (2017) 41–62.
  15. G. Sekaran, S. Karthikeyan, C. Evvie, R. Boopathy, P. Maharaja, Oxidation of refractory organics by heterogeneous Fenton to reduce organic load in tannery wastewater, Clean Technol. Environ. Policy, 15 (2013) 245–253.
  16. C. Cai, H. Zhang, X. Zhong, L. Hou, Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe–Co/SBA-15 catalyst for the degradation of Orange II in water, J. Hazard. Mater., 283 (2015) 70–79.
  17. A.J. Jafari, B. Kakavandi, N. Jaafarzadeh, R.R. Kalantary, M. Ahmadi, A.A. Babaei, Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator: adsorption and degradation studies, J. Ind. Eng. Chem., 45 (2017) 323–333.
  18. J. Deng, M. Xu, S. Feng, C. Qiu, X. Li, J. Li, Iron-doped ordered mesoporous Co3O4 activation of peroxymonosulfate for ciprofloxacin degradation: performance, mechanism and degradation pathway, Sci. Total Environ., 658 (2019) 343–356.
  19. H. Hussain, I.R. Green, I. Ahmed, Journey describing applications of oxone in synthetic chemistry, Chem. Rev., 113 (2013) 3329–3371.
  20. Y.-H. Guan, J. Ma, X.-C. Li, J.-Y. Fang, L.-W. Chen, Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system, Environ. Sci. Technol., 45 (2011) 9308–9314.
  21. J. Liu, J. Zhou, Z. Ding, Z. Zhao, X. Xu, Z. Fang, Ultrasound irritation enhanced heterogeneous activation of peroxymonosulfate with Fe3O4 for degradation of azo dye, Ultrason. Sonochem., 34 (2017) 953–959.
  22. S. Yang, P. Wang, X. Yang, L. Shan, W. Zhang, X. Shao, R. Niu, Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide, J. Hazard. Mater., 179 (2010) 552–558.
  23. T. Zhang, H. Zhu, J.-P. Croue, Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism, Environ. Sci. Technol., 47 (2013) 2784–2791.
  24. J. Deng, Y. Ge, C. Tan, H. Wang, Q. Li, S. Zhou, K. Zhang, Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: effect of water constituents, degradation intermediates and toxicity evaluation, Chem. Eng J., 330 (2017) 1390–1400.
  25. J. Deng, S. Feng, K. Zhang, J. Li, H. Wang, T. Zhang, X. Ma, Heterogeneous activation of peroxymonosulfate using ordered mesoporous Co3O4 for the degradation of chloramphenicol at neutral pH, Chem. Eng. J., 308 (2017) 505–515.
  26. C. Cai, H. Zhang, X. Zhong, L. Hou, Electrochemical enhanced heterogeneous activation of peroxydisulfate by Fe–Co/SBA-15 catalyst for the degradation of Orange II in water, Water Res., 66 (2014) 473–485.
  27. G.K. Dinesh, S. Anandan, T. Sivasankar, Synthesis of Fe-doped Bi2O3 nanocatalyst and its sonophotocatalytic activity on synthetic dye and real textile wastewater, Environ. Sci. Pollut. Res., 23 (2016) 20100–20110.
  28. N. Jaafarzadeh, M. Omidinasab, F. Ghanbari, Combined electrocoagulation and UV-based sulfate radical oxidation processes for treatment of pulp and paper wastewater, Process. Saf. Environ. Prot., 102 (2016) 462–472.
  29. Q. Chen, F. Ji, Q. Guo, J. Fan, X. Xu, Combination of heterogeneous Fenton-like reaction and photocatalysis using Co–TiO2 nanocatalyst for activation of KHSO5 with visible light irradiation at ambient conditions, J. Environ. Sci., 26 (2014) 2440–2450.
  30. S. Khan, X. He, H.M. Khan, D. Boccelli, D.D. Dionysiou, Efficient degradation of lindane in aqueous solution by iron (II) and/or UV activated peroxymonosulfate, J. Photochem. Photobiol., A, 316 (2016) 37–43.
  31. S. Su, W. Guo, C. Yi, Y. Leng, Z. Ma, Degradation of amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation, Ultrason. Sonochem., 19 (2012) 469–474.
  32. A. Shahbazi, H. Younesi, A. Badiei, Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column, Chem. Eng. J., 168 (2011) 505–518.
  33. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ., 424 (2012) 1–10.
  34. A.B. Cundy, L. Hopkinson, R.L.D. Whitby, Use of ironbased technologies in contaminated land and groundwater remediation: a review, Sci. Total Environ., 400 (2008) 42–51.
  35. R. Jinisha, R. Gandhimathi, S.T. Ramesh, P.V. Nidheesh, S. Velmathi, Removal of rhodamine B dye from aqueous solution by electro-Fenton process using iron-doped mesoporous silica as a heterogeneous catalyst, Chemosphere, 200 (2018) 446–454.
  36. X. Sun, Y. Yan, J. Li, W. Han, L. Wang, SBA-15-incorporated nanoscale zero-valent iron particles for chromium(VI) removal from groundwater: mechanism, effect of pH, humic acid and sustained reactivity, J. Hazard. Mater., 266 (2014) 26–33.
  37. P. Shukla, S. Wang, H. Sun, H.-M. Ang, M. Tadé, Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2, Chem. Eng. J., 164 (2010) 255–260.
  38. A. Takdastan, B. Kakavandi, M. Azizi, M. Golshan, Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: a new approach into catalytic degradation of bisphenol A, Chem. Eng. J., 331 (2018) 729–743.
  39. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 279 (1998) 548–552.
  40. R. Huang, H. Yan, L. Li, D. Deng, Y. Shu, Q. Zhang, Catalytic activity of Fe/SBA-15 for ozonation of dimethyl phthalate in aqueous solution, Appl. Catal., B, 106 (2011) 264–271.
  41. APHA, AWWA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, 1989.
  42. N.S. Sanjini, S. Velmathi, Iron impregnated SBA-15, a mild and efficient catalyst for the catalytic hydride transfer reduction of aromatic nitro compounds, RSC Adv., 4 (2014) 15381–15388.
  43. R. Ragavan, A. Pandurangan, Facile synthesis and supercapacitor performances of nitrogen doped CNTs grown over mesoporous Fe/SBA-15 catalyst, New J. Chem., 41 (2017) 11591–11599.
  44. A. Vinu, D.P. Sawant, K. Ariga, K.Z. Hossain, S.B. Halligudi, M. Hartmann, M. Nomura, Direct synthesis of well-ordered and unusually reactive FeSBA-15 mesoporous molecular sieves, Chem. Mater., 17 (2005) 5339–5345.
  45. S. Beirami, H.R. Barzoki, N. Bahramifar, Application of response surface methodology for optimization of trace amount of diazinon preconcentration in natural waters and biological samples by carbon mesoporous CMK-3, Biomed. Chromatogr., 31 (2017) 3874–3876.
  46. S. Wang, K. Wang, C. Dai, H. Shi, J. Li, Adsorption of Pb2+ on amino-functionalized core–shell magnetic mesoporous SBA-15 silica composite, Chem. Eng. J., 262 (2015) 897–903.
  47. Z. Zhang, H. Li, H. Liu, Insight into the adsorption of tetracycline onto amino and amino-Fe3+ gunctionalized mesoporous silica: effect of functionalized groups, J. Environ. Sci., 65 (2018) 171–178.
  48. W. Guo, R. Chen, Y. Liu, M. Meng, X. Meng, Z. Hu, Z. Song, Preparation of ion-imprinted mesoporous silica SBA-15 functionalized with triglycine for selective adsorption of Co(II), Colloids Surf., A, 436 (2013) 693–703.
  49. A. Stefánsson, Iron(III) hydrolysis and solubility at 25°C, Environ. Sci. Technol., 41 (2007) 6117–6123.
  50. Y. Ding, H. Tang, S. Zhang, S. Wang, H. Tang, Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO2 mediated heterogeneous activation of peroxymonosulfate, J. Hazard. Mater., 317 (2016) 686–694.
  51. C. Liang, H.-W. Su, Identification of sulfate and hydroxyl radicals in thermally activated persulfate, Ind. Eng. Chem. Res., 48 (2009) 5558–5562.
  52. M. Usman, P. Faure, C. Ruby, K. Hanna, Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils, Chemosphere, 87 (2012) 234–240.
  53. K.-Y.A. Lin, Z.-Y. Zhang, Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfurdoped carbon nitride as a metal-free heterogeneous catalyst, Chem. Eng. J., 313 (2017) 1320–1327.
  54. B. Darsinou, Z. Frontistis, M. Antonopoulou, I. Konstantinou, D. Mantzavinos, Sono-activated persulfate oxidation of bisphenol A: kinetics, pathways and the controversial role of temperature, Chem. Eng. J., 280 (2015) 623–633.
  55. H. Lin, J. Wu, H. Zhang, Degradation of clofibric acid in aqueous solution by an EC/Fe3+/PMS process, Chem. Eng. J., 244 (2014) 514–521.
  56. Q. Yang, H. Choi, S.R. Al-Abed, D.D. Dionysiou, Iron–cobalt mixed oxide nanocatalysts: heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications, Appl. Catal., B, 88 (2009) 462–469.
  57. X. Wang, L. Wang, J. Li, J. Qiu, C. Cai, H. Zhang, Degradation of Acid Orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation, Sep. Purif. Technol., 122 (2014) 41–46.
  58. F. Ji, C. Li, L. Deng, Performance of CuO/oxone system: heterogeneous catalytic oxidation of phenol at ambient conditions, Chem. Eng. J., 178 (2011) 239–243.
  59. Q. Wang, X. Lu, Y. Cao, J. Ma, J. Jiang, X. Bai, T. Hu, Degradation of bisphenol S by heat activated persulfate: kinetics study, transformation pathways and influences of co-existing chemicals, Chem. Eng. J., 328 (2017) 236–245.
  60. J. Sharma, I.M. Mishra, D.D. Dionysiou, V. Kumar, Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): kinetics, influence of co-existing chemicals and degradation pathway, Chem. Eng. J., 276 (2015) 193–204.
  61. G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol., 38 (2004) 3705–3712.
  62. J. García-Montaño, F. Torrades, J.A. García-Hortal, X. Domenech, J. Peral, Combining photo-Fenton process with aerobic sequencing batch reactor for commercial hetero-bireactive dye removal, Appl. Catal., B, 67 (2006) 86–92.