References

  1. C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn., 20 (1995) 273–297.
  2. Q. Zheng, K. Chen, Y. Zhou, C.C. Gu, H.B. Guan, Text localization and recognition in complex scenes using local features, Lect. Notes Comput. Sci., 6494 (2011) 121–132.
  3. H. Ouyang, Z. Liu, L. Wang, W. Peng, H. Deng, M.A. Ashraf, Fungicidal activity and bamboo preservation of Pinus elliottii needles extracts, Wood Res., 63 (2018) 533–546.
  4. M. Abbasi, U. Rafique, G. Murtaza, M.A. Ashraf, Synthesis, characterisation and photocatalytic performance of ZnS coupled Ag2S nanoparticles: a remediation model for environmental pollutants, Arabian J. Chem., 11 (2018) 827–837.
  5. B. Epshtein, E. Ofek, Y. Wexler, Detecting Text in Natural Scenes with Stroke Width Transform, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2010.
  6. V. Cherkassky, F. Mulier, Learning from Data: Concepts, Theory and Methods, John Wiley & Sons, NY, 1997.
  7. K.S. Rawat, R. Kumar, S.K. Singh, Topographical distribution of cobalt in different agro-climatic zones of Jharkhand state, India, Geol. Ecol. Landscapes, 3 (2019) 14–21.
  8. V. Vapnik, S.E. Golowich, A. Smola, Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing, M.C. Mozer, M.I. Jordan, T. Petsche, Eds., Advances in Neural Information Processing Systems, Morgan Kaufmann, San Mateo, 1997, pp. 281–287.
  9. A. Amid, N.A. Samah, Proteomics as tools for biomarkers discovery of adulteration in slaughtering procedures, Sci. Heritage J., 3 (2019) 11–16.
  10. K.-R. Mǜ ller, A.J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, V. Vapnik, Predicting Time Series with Support Vector Machines, ICANN 1997: Artificial Neural Networks — ICANN’97, International Conference on Artificial Neural Networks, Springer Lecture Notes in Computer Science, 1997, pp. 999–1004.
  11. F. Qiao, Research on design principles of visual identity in campus environment, Sci. Heritage J., 2 (2018) 1–3.
  12. H.D. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, V. Vapnik, Support Vector Regression Machines, M.C. Mozer, M.I. Jordan, T. Petsche, Eds., Advances in Neural Information Processing Systems, Morgan Kaufmann, San Mateo, 1997, pp. 155–161.
  13. M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, T. Poggio, Pedestrian Detection using Wavelet Templates, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, Puerto Rico, 1997.
  14. A. Amamra, K. Khanchoul, Water quality of the Kebir watershed, northeast of Algeria, J. CleanWas, 3 (2019) 28–32.
  15. M.A. Hearst, B. Scholkopf, S. Dumais, Trends and controversiessupport vector machines, IEEE Intell. Syst., 13 (1998) 18–28.
  16. E. Osuna, R. Freund, F. Girosi, Training Support Vector Machines: An Application to Face Detection, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, Puerto Rico, 1997.
  17. T.D.T. Oyedotun, L. Johnson-Bhola, Beach litter and grading of the coastal landscape for tourism development in sections of Guyana’s coast, J. CleanWAS, 3 (2019) 1–9.
  18. C.Y. Lu, P.F. Yan, C.S. Zhang, J. Zhou, Face Recognition using Support Vector Machine, Proceedings of ICNNB’98, Beijing, 1998, pp. 652–655.
  19. Y. Rajendran, R. Mohsin, Emission due to motor gasoline fuel in reciprocating lycoming O-320 engine in comparison to aviation gasoline fuel, Environ. Ecosyst. Sci., 2 (2018) 20–24.
  20. V.D. Malsburg, Christoph, V. Seelen, Werner, C. Vorbrüggen, Jan, Sendhoff, Bernhard, Artificial Neural Networks - ICANN 96, 1996 International Conference on Artificial Neural Networks, Bochum, Germany, 1996, pp. 251–256.
  21. M. Wilson, M.A. Ashraf, Study of fate and transport of emergent contaminants at waste water treatment plant, Environ. Contam. Rev., 1 (2018) 1–12.
  22. M. Brown, H.G. Lewis, S.R. Gunn, Linear spectral mixture models and support vector machines for remote sensing, IEEE Trans. Geosci. Remote Sens., 38 (2000) 2346–2360.
  23. A. Ahmed, A. Nasir, S. Basheer, C. Arslan, S. Anwar, Ground water quality assessment by using geographical information system and water quality index: a case study of Chokera, Faisalabad, Pakistan, Water Conserv. Manage., 3 (2019) 7–19.
  24. K. Bennett, O. Mangasarian, Robust linear programming discrimination of two linearly inseparable sets, Optim. Methods Software, 1 (1992) 23–34.
  25. E. Osuna, R. Freund, F. Girosi, An Improved Training Algorithm for Support Vector Machines, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop, IEEE, 1997.
  26. L. Yang, H. Guo, H. Chen, L. He, T. Sun, A bibliometric analysis of desalination research during 1997–2012, Water Conserv. Manage., 2 (2018) 18–23.
  27. K.P. Bennett, A. Demiriz, Semi-supervised Support Vector Machines, Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II, IEEE, 1998.
  28. X.G. Zhang, Using Class-center Vectors to Build Support Vector Machines, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop, IEEE, 1999, pp. 3–11.
  29. D. Anguita, S. Ridella, S. Rovetta, Circuital implementation of support vector machines, Electron. Lett., 34 (1998) 1596–1597.
  30. V.N. Vapnik, The Nature of Statistical Learning, Springer, Berlin, 1995.
  31. V.N. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York, 1998.
  32. G. Wahba, Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, 1990, p. 59.
  33. B. Boser, A Training Algorithm for Optimal Margin Classifiers, Fifth Annual Workshop on Computational Learning Theory, ACM Press, Pittsburgh, 1992.
  34. C.W. Hsu, C.J. Lin, A comparison of methods for multi class support vector machines, IEEE Trans. Neural Networks, 13 (2002) 415–425.
  35. D.J. Sebald, J.A. Buchlew, Support vector machines and the multiple hypothesis test problem, IEEE Trans. Signal Process., 49 (2001) 2865–2872.
  36. N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, The Syndicate of the Press of the University of Cambridge, Cambridge, 2000.
  37. H.Q. Wang, F.C. Sun, Y.N. Cai, N. Chen, L.G. Ding, On multiple kernel learning methods, Acta Autom. Sin., 36 (2010) 1037−1050.
  38. H.Q. Yang, Z.L. Xu, J.P. Ye, I. King, M.R. Lyu, Efficient sparse generalized multiple kernel learning, IEEE Trans. Neural Networks, 22 (2011) 433−446.
  39. C. Burges, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Discovery, 2 (1998) 121–167.
  40. N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines: and Other Kernel-Based Learning Methods, Cambridge University Press, New York, 1999.
  41. J.S. Thierman, L.M. Hallaj, Apparatus and Method for Geometric Measurement: U.S. Patent Application 12/784, 694, 2010-05-21.
  42. A. Sohelf, G.C. Karmakar, S. Dooleyls, Geometric distortion measurement for shape coding: a contemporary review, ACM Comput. Surv., 43 (2011) 29.
  43. N. Kevi, S. Zhou, R. Chellappa, From sample similarity: probabilistic distance measure in reproducing kernel hilbert space, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006) 917–929.