References
- C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn.,
20 (1995) 273–297.
- Q. Zheng, K. Chen, Y. Zhou, C.C. Gu, H.B. Guan, Text localization
and recognition in complex scenes using local features,
Lect. Notes Comput. Sci., 6494 (2011) 121–132.
- H. Ouyang, Z. Liu, L. Wang, W. Peng, H. Deng, M.A. Ashraf,
Fungicidal activity and bamboo preservation of Pinus elliottii
needles extracts, Wood Res., 63 (2018) 533–546.
- M. Abbasi, U. Rafique, G. Murtaza, M.A. Ashraf, Synthesis,
characterisation and photocatalytic performance of ZnS coupled
Ag2S nanoparticles: a remediation model for environmental
pollutants, Arabian J. Chem., 11 (2018) 827–837.
- B. Epshtein, E. Ofek, Y. Wexler, Detecting Text in Natural
Scenes with Stroke Width Transform, IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, IEEE,
2010.
- V. Cherkassky, F. Mulier, Learning from Data: Concepts, Theory
and Methods, John Wiley & Sons, NY, 1997.
- K.S. Rawat, R. Kumar, S.K. Singh, Topographical distribution
of cobalt in different agro-climatic zones of Jharkhand state,
India, Geol. Ecol. Landscapes, 3 (2019) 14–21.
- V. Vapnik, S.E. Golowich, A. Smola, Support Vector Method for
Function Approximation, Regression Estimation, and Signal
Processing, M.C. Mozer, M.I. Jordan, T. Petsche, Eds., Advances
in Neural Information Processing Systems, Morgan Kaufmann,
San Mateo, 1997, pp. 281–287.
- A. Amid, N.A. Samah, Proteomics as tools for biomarkers
discovery of adulteration in slaughtering procedures, Sci.
Heritage J., 3 (2019) 11–16.
- K.-R. Mǜ ller, A.J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen,
V. Vapnik, Predicting Time Series with Support Vector
Machines, ICANN 1997: Artificial Neural Networks —
ICANN’97, International Conference on Artificial Neural
Networks, Springer Lecture Notes in Computer Science, 1997,
pp. 999–1004.
- F. Qiao, Research on design principles of visual identity in
campus environment, Sci. Heritage J., 2 (2018) 1–3.
- H.D. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, V. Vapnik,
Support Vector Regression Machines, M.C. Mozer, M.I. Jordan,
T. Petsche, Eds., Advances in Neural Information Processing
Systems, Morgan Kaufmann, San Mateo, 1997, pp. 155–161.
- M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, T. Poggio,
Pedestrian Detection using Wavelet Templates, Proceedings of
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, IEEE, Puerto Rico, 1997.
- A. Amamra, K. Khanchoul, Water quality of the Kebir watershed,
northeast of Algeria, J. CleanWas, 3 (2019) 28–32.
- M.A. Hearst, B. Scholkopf, S. Dumais, Trends and controversiessupport
vector machines, IEEE Intell. Syst., 13 (1998) 18–28.
- E. Osuna, R. Freund, F. Girosi, Training Support Vector Machines:
An Application to Face Detection, Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, IEEE, Puerto Rico, 1997.
- T.D.T. Oyedotun, L. Johnson-Bhola, Beach litter and grading
of the coastal landscape for tourism development in sections of
Guyana’s coast, J. CleanWAS, 3 (2019) 1–9.
- C.Y. Lu, P.F. Yan, C.S. Zhang, J. Zhou, Face Recognition using
Support Vector Machine, Proceedings of ICNNB’98, Beijing,
1998, pp. 652–655.
- Y. Rajendran, R. Mohsin, Emission due to motor gasoline fuel in
reciprocating lycoming O-320 engine in comparison to aviation
gasoline fuel, Environ. Ecosyst. Sci., 2 (2018) 20–24.
- V.D. Malsburg, Christoph, V. Seelen, Werner, C. Vorbrüggen,
Jan, Sendhoff, Bernhard, Artificial Neural Networks - ICANN
96, 1996 International Conference on Artificial Neural Networks,
Bochum, Germany, 1996, pp. 251–256.
- M. Wilson, M.A. Ashraf, Study of fate and transport of emergent
contaminants at waste water treatment plant, Environ. Contam.
Rev., 1 (2018) 1–12.
- M. Brown, H.G. Lewis, S.R. Gunn, Linear spectral mixture
models and support vector machines for remote sensing, IEEE
Trans. Geosci. Remote Sens., 38 (2000) 2346–2360.
- A. Ahmed, A. Nasir, S. Basheer, C. Arslan, S. Anwar, Ground
water quality assessment by using geographical information
system and water quality index: a case study of Chokera,
Faisalabad, Pakistan, Water Conserv. Manage., 3 (2019) 7–19.
- K. Bennett, O. Mangasarian, Robust linear programming discrimination
of two linearly inseparable sets, Optim. Methods
Software, 1 (1992) 23–34.
- E. Osuna, R. Freund, F. Girosi, An Improved Training Algorithm
for Support Vector Machines, Neural Networks for Signal
Processing VII. Proceedings of the 1997 IEEE Signal Processing
Society Workshop, IEEE, 1997.
- L. Yang, H. Guo, H. Chen, L. He, T. Sun, A bibliometric analysis
of desalination research during 1997–2012, Water Conserv.
Manage., 2 (2018) 18–23.
- K.P. Bennett, A. Demiriz, Semi-supervised Support Vector
Machines, Proceedings of the 1998 Conference on Advances in
Neural Information Processing Systems II, IEEE, 1998.
- X.G. Zhang, Using Class-center Vectors to Build Support
Vector Machines, Neural Networks for Signal Processing IX:
Proceedings of the 1999 IEEE Signal Processing Society Workshop,
IEEE, 1999, pp. 3–11.
- D. Anguita, S. Ridella, S. Rovetta, Circuital implementation of
support vector machines, Electron. Lett., 34 (1998) 1596–1597.
- V.N. Vapnik, The Nature of Statistical Learning, Springer,
Berlin, 1995.
- V.N. Vapnik, Statistical Learning Theory, John Wiley & Sons,
New York, 1998.
- G. Wahba, Spline Models for Observational Data, CBMS-NSF
Regional Conference Series in Applied Mathematics, 1990, p. 59.
- B. Boser, A Training Algorithm for Optimal Margin Classifiers,
Fifth Annual Workshop on Computational Learning Theory,
ACM Press, Pittsburgh, 1992.
- C.W. Hsu, C.J. Lin, A comparison of methods for multi
class support vector machines, IEEE Trans. Neural Networks,
13 (2002) 415–425.
- D.J. Sebald, J.A. Buchlew, Support vector machines and the
multiple hypothesis test problem, IEEE Trans. Signal Process.,
49 (2001) 2865–2872.
- N. Cristianini, J. Shawe-Taylor, An Introduction to Support
Vector Machines and Other Kernel-based Learning Methods,
The Syndicate of the Press of the University of Cambridge,
Cambridge, 2000.
- H.Q. Wang, F.C. Sun, Y.N. Cai, N. Chen, L.G. Ding, On multiple
kernel learning methods, Acta Autom. Sin., 36 (2010) 1037−1050.
- H.Q. Yang, Z.L. Xu, J.P. Ye, I. King, M.R. Lyu, Efficient sparse
generalized multiple kernel learning, IEEE Trans. Neural
Networks, 22 (2011) 433−446.
- C. Burges, A tutorial on support vector machines for pattern
recognition, Data Min. Knowl. Discovery, 2 (1998) 121–167.
- N. Cristianini, J. Shawe-Taylor, An Introduction to Support
Vector Machines: and Other Kernel-Based Learning Methods,
Cambridge University Press, New York, 1999.
- J.S. Thierman, L.M. Hallaj, Apparatus and Method for Geometric
Measurement: U.S. Patent Application 12/784, 694,
2010-05-21.
- A. Sohelf, G.C. Karmakar, S. Dooleyls, Geometric distortion
measurement for shape coding: a contemporary review, ACM
Comput. Surv., 43 (2011) 29.
- N. Kevi, S. Zhou, R. Chellappa, From sample similarity:
probabilistic distance measure in reproducing kernel hilbert
space, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006) 917–929.