References

  1. Y. Song, P. Yuan, B. Zheng, J. Peng, F. Yuan, Y. Gao, Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater, Chemosphere, 69 (2007) 319–324.
  2. H. Huang, J. Liu, L. Ding, Recovery of phosphate and ammonia nitrogen from the anaerobic digestion supernatant of activated sludge by chemical precipitation, J. Clean. Prod., 102 (2015) 437–446.
  3. L. Pastor, D. Mangin, J. Ferrer, A. Seco, Struvite formation from the supernatants of an anaerobic digestion pilot plant, Bioresour. Technol., 101 (2010) 118–125.
  4. V. Smil, Phosphorus in the environment : Natural flows and human interferences, Annu. Rev. Energy Environ., 25 (2000) 53–88.
  5. N. Gilbert, Environment: The disappearing nutrient, Nature, 461 (2009) 716–718.
  6. H. Huang, B. Li, J. Li, P. Zhang, W. Yu, N. Zhao, G. Guo, B. Young, Influence of process parameters on the heavy metal (Zn2+, Cu2+ and Cr3+) content of struvite obtained from synthetic swine wastewater, Environ. Pollut., 245 (2019a) 658–665.
  7. Y. Liu, S. Kumar, J.-H. Kwag, C. Ra, Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review, J. Chem. Technol. Biotechnol., 88 (2013) 181–189.
  8. S. Kataki, H. West, M. Clarke, D.C. Baruah, Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential, Resour. Conserv. Recycl., 107 (2016) 142–156.
  9. Y. Gao, B. Liang, H. Chen, P. Yin, An experimental study on the recovery of potassium (K) and phosphorous (P) from synthetic urine by crystallization of magnesium potassium phosphate, Chem. Eng. J., 337 (2018) 19–29.
  10. H. Huang, D.D. Zhang, J. Li, G. Guo, S. Tang, Phosphate recovery from swine wastewater using plant ash in chemical crystallization, J. Clean. Prod., 168 (2017) 338–345.
  11. L. Ma, S. Yuana, F. Ji, W. Wang, Z.-H. Hu, Ammonia and phosphorous precipitation through struvite crystallization from swine wastewater with high suspended solid, Desal. Water Treat., 116 (2018) 258–266.
  12. A.M. Cardoso, M.B. Horn, L.S. Ferret, C.M.N. Azevedo, M. Pires, Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment, J. Hazard. Mater., 287 (2015) 69–77.
  13. H. Huang, D. Zhang, W. Wang, B. Li, N. Zhao, J. Li, J. Dai, Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources, Sci. Total Environ., 655 (2019b) 211–219.
  14. H. Huang, J. Yang, D. Li, Recovery and removal of ammonia-nitrogen and phosphate from swine wastewater by internal recycling of struvite chlorination product, Bioresour. Technol., 172 (2014) 253–259.
  15. N. Xu, Y. Li, L. Zheng, Y. Gao, H. Yin, J. Zhao, Z. Chen, J. Chen, M. Chen, Synthesis and application of magnesium amorphous calcium carbonate for removal of high concentration of phosphate, Chem. Eng. J., 251 (2014) 102–110.
  16. Q. Sun, Y. Yang, Z. Zhao, Q. Zhang, X. Zhao, G. Nie, T. Jiao, Q. Peng, Elaborate design of polymeric nanocomposites with Mg(II)-buffering nanochannels for highly efficient and selective removal of heavy metals from water: Case study for Cu(II), Environ. Sci. Nano., 5 (2018) 2440–2451.
  17. H. Carlsson, H. Aspegren, N. Lee, A. Hilmer, Calcium phosphate precipitation in biological phosphorus removal systems, Water Res., 31 (1997) 1047–1055.
  18. R. Taddeo, M. Honkanen, K. Kolppo, R. Lepistö, Nutrient management via struvite precipitation and recovery from various agroindustrial wastewaters: Process feasibility and struvite quality, J. Environ. Manage., 212 (2018) 433–439.
  19. H. Huang, J. Li, B. Li, D. Zhang, N. Zhao, S. Tang, Comparison of different K-struvite crystallization processes for simultaneous potassium and phosphate recovery from source-separated urine, Sci. Total Environ., 651 (2019c) 787–795.
  20. K. Yetilmezsoy, Z. Sapci-Zengin, Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer, J. Hazard. Mater., 166 (2009) 260–269.
  21. Y.H. Liu, J.H. Kwag, J.H. Kim, C.S. Ra, Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater, Desalination, 277 (2011) 364–369.
  22. S.W. Huang, J.Y. Jin, Status of heavy metals in agricultural soils as affected by different patterns of land use, Environ. Monit. Assess., 139 (2008) 317–327.
  23. Z. Atafar, A. Mesdaghinia, J. Nouri, M. Homaee, M. Yunesian, M. Ahmadimoghaddam, A.H. Mahvi, Effect of fertilizer application on soil heavy metal concentration, Environ. Monit. Assess., 160 (2010) 83–89.
  24. H. Huang, P. Zhang, Z. Zhang, J. Liu, J. Xiao, F. Gao, Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology, J. Clean. Prod., 127 (2016) 302–310.
  25. N. Li, S. Tang, Y. Rao, J. Qi, Q. Zhang, D. Yuan, Peroxymonosulfate enhanced antibiotic removal and synchronous electricity generation in a photocatalytic fuel cell, Electrochim. Acta., 298 (2019) 59–69.
  26. S. Tang, D. Yuan, Y. Rao, M. Li, G. Shi, J. Gu, T. Zhang, Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma, J. Hazard. Mater., 366 (2019) 669–676.
  27. G. Qiu, Y.P. Ting, Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment, Bioresour. Technol., 170 (2014) 221–229.
  28. W. Moerman, M. Carballa, A. Vandekerckhove, D. Derycke, W. Verstraete, Phosphate removal in agro-industry: Pilot- and full-scale operational considerations of struvite crystallization, Water Res., 43 (2009) 1887–1892.
  29. J.A. O’Neal, T.H. Boyer, Phosphate recovery using hybrid anion exchange: Applications to source-separated urine and combined wastewater streams, Water Res., 47 (2013) 5003–5017.
  30. A. Adnan, D.S. Mavinic, F.A. Koch, Pilot-scale study of phosphorus recovery through struvite crystallization - examining the process feasibility, J. Environ. Eng. Sci., 2 (2003) 315–324. doi:10.1139/s03-040.
  31. Y.H. Liu, S. Kumar, J.H. Kwag, J.H. Kim, J.D. Kim, C.S. Ra, Recycle of electrolytically dissolved struvite as an alternative to enhance phosphate and nitrogen recovery from swine wastewater, J. Hazard. Mater., 195 (2011) 175–181.
  32. Y. Shen, Z.L. Ye, X. Ye, J. Wu, S. Chen, Phosphorus recovery from swine wastewater by struvite precipitation: compositions and heavy metals in the precipitates, Desal. Water Treat., 57 (2016) 10361–10369.
  33. B. Liu, A. Giannis, J. Zhang, V.W.C. Chang, J.Y. Wang, Characterization of induced struvite formation from source-separated urine using seawater and brine as magnesium sources, Chemosphere, 93 (2013) 2738–2747.
  34. H. Huang, Q. Song, W. Wang, S. Wu, J. Dai, Treatment of anaerobic digester effluents of nylon wastewater through chemical precipitation and a sequencing batch reactor process, J. Environ. Manage., 101 (2012) 68–74.
  35. X.Z. Li, Q.L. Zhao, X.D. Hao, Ammonium removal from landfill leachate by chemical precipitation, Waste Manag., 19 (1999) 409–415.
  36. A. Gunay, D. Karadag, I. Tosun, M. Ozturk, Use of magnesit as a magnesium source for ammonium removal from leachate, J. Hazard. Mater., 156 (2008) 619–623.
  37. D. Xiao, H. Huang, P. Zhang, Z. Gao, N. Zhao, Utilizing the supernatant of waste sulfuric acid after dolomite neutralization to recover nutrients from swine wastewater, Chem. Eng. J., 337 (2018) 265–274.
  38. H. Yan, K. Shih, Effects of calcium and ferric ions on struvite precipitation: A new assessment based on quantitative X-ray diffraction analysis, Water Res., 95 (2016) 310–318.
  39. American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, twentieth ed., American Public Health Association/Water Pollution Control Federation, Washington, DC, 1998.
  40. D.M. Zhang, Y.X. Chen, G. Jilani, W.X. Wu, W.L. Liu, Z.Y. Han, Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants, Bioresour. Technol., 116 (2012) 386–395.
  41. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
  42. W. Song, Z. Li, F. Liu, Y. Ding, P. Qi, H. You, C. Jin, Effective removal of ammonia nitrogen from waste seawater using crystal seed enhanced struvite precipitation technology with response surface methodology for process optimization, Environ. Sci. Pollut. Res., 25 (2018) 628–638.
  43. D.A. Georgantas, H.P. Grigoropoulou, Orthophosphate and metaphosphate ion removal from aqueous solution using alum and aluminum hydroxide, J. Colloid Interface Sci., 315 (2007) 70–79.
  44. S. Zhou, Y. Wu, Improving the prediction of ammonium nitrogen removal through struvite precipitation, Environ. Sci. Pollut. Res., 19 (2012) 347–360.
  45. X. Hao, C. Wang, M.C.M. Van Loosdrecht, Y. Hu, Looking beyond struvite for P-recovery, Environ. Sci. Technol., 47 (2013) 4965–4966.
  46. J.M. Chimenos, A.I. Fernández, G. Villalba, M. Segarra, A. Urruticoechea, B. Artaza, F. Espiell, Removal of ammonium and phosphates from wastewater resulting from the process of cochineal extraction using MgO-containing by-product, Water Res., 37 (2003) 1601–1607.
  47. P. Stolzenburg, A. Capdevielle, S. Teychené, B. Biscans, Struvite precipitation with MgO as a precursor: Application to wastewater treatment, Chem. Eng. Sci., 133 (2014) 9–15.
  48. E. Musvoto, M.C. Wentzel, G.A. Ekama, Integrated chemical- physical processes modelling-II. simulating aeration treatment of anaerobic digester supernatants, Water Res., 34 (2000) 1868–1880.
  49. C.K. Chauhan, M.J. Joshi, In vitro crystallization, characterization and growth-inhibition study of urinary type struvite crystals, J. Cryst. Growth, 362 (2013) 330–337.
  50. Çelen, J.R. Buchanan, R.T. Burns, R. Bruce Robinson, D. Raj Raman, Using a chemical equilibrium model to predict amendments required to precipitate phosphorus as struvite in liquid swine manure, Water Res., 41 (2007) 1689–1696.
  51. K.S. Le Corre, E. Valsami-Jones, P. Hobbs, S.A. Parsons, Impact of calcium on struvite crystal size, shape and purity, J. Cryst. Growth, 283 (2005) 514–522.
  52. Kabdaşli, S.A. Parsons, O. Tunay, Effect of major ions on induction time of struvite precipitation, Croat. Chem. Acta., 79 (2006) 243–251.
  53. Wang, J.G. Burken, X. (Jackie) Zhang, R. Surampalli, Engineered struvite precipitation: impacts of component-ion molar ratios and pH, J. Environ. Eng., 131 (2005) 1433–1440.