References

  1. I.K. Erabee, A. Ahsan, B. Jose, T. Arunkumar, R. Sathyamurthy, N.N.N. Daud, Idrus, Effects of electric potential, NaCl, pH and distance between electrodes on efficiency of electrolysis in landfill leachate treatment, J. Environ. Sci. Health (Part A), 52(8) (2017) 735–741.
  2. I.K. Erabee, A. Ahsan, B. Jose, M.M.A Aziz, A.W.M. Ng, S. Idrus, N.N.N. Daud, Adsorptive treatment of landfill leachate using activated carbon modified with three different methods, KSCE J. Civil Eng., 22(4) (2017) 1–13.
  3. I.K. Erabee, A. Ahsan, A.W. Zularisam, S. Idrus, N.N.N. Daud, T. Arunkumar, R. Sathyamurthy, A. Al-Rawajfeh, A new activated carbon prepared from sago palm bark through physiochemical activated process with zinc chloride, Eng. J., 21(5) (2017) 1–14.
  4. I.K. Erabee, A. Ahsan, N.N.N. Daud, S. Idrus, S. Shams, M.F. Md Din, S. Rezania, Manufacture of low-cost activated carbon using sago palm bark and date pits by physiochemical activation, BioResources, 12(1) (2017) 1916–1923.
  5. I.K. Erabee, A. Ahsan, M. Imteaz, M.M.A. Aziz, S. Idrus, N.N.N. Daud, Adsorption of heavy metals from landfill leachate through low cost activated carbon: Fixed bed adsorption study, J. Desal. Water Purif., 2(8) (2017) 2–7.
  6. I.K. Erabee, A. Ahsan, M.A. Imteaz, A.W.M. Ng, Landfill leachate treatment by electrolysis and preparation of low cost activated carbon. Chapter 5, (2018) pp. 113–140. In Nutrients, Wastewater and Leachate: Testing, Risks and Hazards, A. Ahsan, Ed., Nova Science, USA.
  7. I.K. Erabee, A. Ahsan, M. Imteaz, R. Sathyamurthy, T. Arunkumar, S. Idrus, N.N.N. Daud, Effects of chemical impregnation agents on the characterisation of porosity and surface area of activated carbon prepared from sago palm bark, J. Eng. Res., 6(4) (2018) 1–21.
  8. I.K. Erabee, Removal of ammonia nitrogen NH3-N and hexavalent chromium (VI) from wastewater using agricultural waste activated carbon, Orient. J. Chem., 34(2) (2018) 1033–1040.
  9. K. Erabee, S. Ethaib, Treatment of contaminated landfill leachate using aged refuse biofilter medium, Orient. J. Chem., 34(3) (2018) 1441–1450.
  10. Corporation, C. Granular activated carbon for water and wastewater treatment, 1992. Retrieved from http://www.carbtrol.com/water&waste.pdf.
  11. W. Eckhard, Adsorption Technology in Water Treatment Fundamentals, Processes, and Modelling. Walter de Gruyter GmbH & Co. KG, Berlin/Boston, 2012.
  12. S.E. Bailey, T.J. Olin, R.M. Brika, D.A. Adrian, A review of potentially low-cost sorbent for heavy metals, Water Res., 33 (1999) 2469–2479.
  13. A.K. Meena, K. Kadirvelu, G.K. Mishra, C. Rajagopal, P.N. Nagar, Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica), J. Hazard. Mater., 150 (2008) 604–611.
  14. S. Dhiraj, M. Garima, M.P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review, Bioresour. Technol, 99(14) (2008) 6017–6027.
  15. C. Namasivayam, K. Ranganathan, Removal of Pb(II), Cd(II) and Ni(II) and mixture of metal ions by adsorption onto waste Fe (III), Cr(III) hydroxide and fixed bed studies, Environ. Technol., 16(9) (1995) 851–860.
  16. S. Balaji, T. Kalaivani, B. Sushma, C. VarneethaPillai, M. Shalini, C. Rajasekaran, Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from Ranipet industrial area — an application towards phycore mediation, Int. J. Phytoremed., 18(8) (2015) 747–753.
  17. A. Rezaee, H. Godini, S. Dehestani, A. Khavanin, Application of impregnated almond shell activated carbon by zinc and zinc sulphate for nitrate removal from water, J. Environ. Sci. Health, Toxic/Hazard. Subst. Environ. Eng., 5 (2) (2008) 125–130.
  18. N. Saranya, A. Ajmani, V. Sivasubramanian, N. Selvaraju, Hexavalent chromium removal from simulated and real effluents using Artocarpusheterophyllus peel biosorbent – Batch and continuous studies, J. Molec. Liq., 265 (2018) 779–790.
  19. S. Rangabhashiyam, E.N. Suganya Selvaraju, Packed bed column investigation on hexavalent chromium adsorption using activated carbon prepared from SwieteniaMahogani fruit shells, Desal. Water Treat., 57(28) (2018) 13048–13055
  20. A. Singh, D. Kumar, J.P. Gaur, Continuous metal removal from solution and industrial effluents using Spirogyra biomass-packed column reactor, Water Res., 46(3) (2012) 779– 788.
  21. M. Banerjee, N. Bar, R.K. Basu, S.K. Das, Removal of Cr(VI) from its aqueous solution using green adsorbent pistachio shell: a fixed bed column study and GA-ANN modelling, Water Conserv. Sci. Eng., 3(1) (2017) 19–31.
  22. A.M. Bhatnagar, Y.H. Choi, W. Jung, S.H. Lee, S.J. Kim, G. Lee, H.S. Suk, B.M. Kim, S.H. Kim, B.H. Jeon, J.W. Kang, Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon, J. Sci. Technol., 43(4) (2008) 886–907.
  23. A. Ahsan, I.K. Erabee, B. Jose, M. Imteaz, S. Idrus, N.N.N. Daud, Adsorption isotherm of modified activated carbon using KMnO4. Proc. Intl Conf on water: from pollution to purification (ICW 2016). Dec 12–15, 79–80 at Mahatma Gandhi University, Kottayam, Kerala, India. http://www.ctamgu.in/icw2016/index.html.
  24. K. Ohe, Y. Nagae, S. Nakamura, Y. Baba, Removal of nitrate anion by carbonaceous materials prepared from bamboo and coconut shell, J. Chem. Eng. Japan, 36(4) (2003) 511–515.
  25. K. Mizuta, T. Mstsumoto, Y. Hatate, K. Nishihara, T. Nakanishi, Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal, Bioresour. Technol., 95(3) (2004) 255–257.
  26. U.S. Orlando, A.U. Baes, W. Nishijima, M. Okada, A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials, Bioresour. Technol. 83(3) (2002) 195–198.
  27. F. Rodriguez-Reinoso, M. Molina-Sabio, Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview, Carbon, 30(7) (1992) 1111–1118.
  28. ASTM D 2867-09. Standard test method for moisture in activated carbon: Designation, ASTM International, West Conshohocken, USA, 2009.
  29. S. Brunauer, P.H. Emmet, E. Teller, Adsorption of gases in multimolecular layers, J. Amer. Chem. Soc., 60(2) (1938) 309–319.
  30. N. Daneshvar, A. Oladegaragoze, N. Djafarzadeh, Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters, J. Hazard. Mater., B129 (2006) 116 – 122.
  31. D.C.K. Ko, J.F. Porter, G. McKay, Optimised correlations for the fixed-bed adsorption of metal ions on bone char, Chem. Eng. Sci., 55(23) (2000) 5819–5829.
  32. Z. Aksu, F. Gonen, Biosorption of phenol by immobilized activated carbon sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem., 39(5) (2004) 599–613.
  33. S. Singh, V.C. Srivastava, I.D. Mall, Fixed-bed study for adsorptive removal of furfural by activated carbon, Colloids Surfaces A: Physicochem. Eng. Asp., 332 (2009) 50–56.
  34. D. Carpine, J.I.A. Dagostin, V.R. da Silva, L. Igarashi-Mafra, M.R. Mafra, Adsorption of volatile aroma compound 2-phenylethanol from synthetic solution onto granular activated carbon in batch and continuous modes, J. Food Eng., 117 (2013) 370–377.
  35. A.M.D. Canteli, D. Carpine, A. Scheer, M.R. Mafra, L. Igarashi-Mafra, Fixed-bed column adsorption of the coffee aroma compound benzaldehyde from aqueous solution onto granular activated carbon from coconut husk, LWT-Food Sci. Technol., 59(2) (2014) 1025–1032.