References

  1. E.E. Ateia, F.S. Soliman, Modification of Co/Cu nanoferrites properties via Gd3+/Er3+ doping, Appl. Phys. A., 123 (2017) 312.
  2. P. Majewski, P. Krysiński, Synthesis, surface modifications, and size-sorting of mixed nickel–zinc ferrite colloidal magnetic nanoparticles, Chemistry - Eur. J., 14 (2008) 7961–7968.
  3. D. Nieciecka, K. Nawara, K. Kijewska, A.M. Nowicka, M. Mazur, P. Krysinski, Solid-core and hollow magnetic nanostructures: Synthesis, surface modifications and biological applications, Bioelectrochemistry, 93 (2013) 2–14.
  4. V.A. Kolesov, C. Fuentes-Hernandez, W.-F. Chou, N. Aizawa, F.A. Larrain, M. Wang, A. Perrotta, S. Choi, S. Graham, G.C. Bazan, Solution-based electrical doping of semi conducting polymer films over a limited depth, Nature Mater., 16 (2017) 474–480.
  5. H. Anwar, A. Maqsood, Comparison of structural and electrical properties of Co2+ doped Mn-Zn soft nano ferrites prepared via coprecipitation and hydrothermal methods, Mater. Res. Bull., 49 (2014) 426–433.
  6. Z. Lu, Z. Yu, J. Dong, M. Song, Y. Liu, X. Liu, D. Fan, Z. Ma, Y. Yan, P. Huo, Construction of stable core–shell imprinted Ag-(poly-o-phenylenediamine)/CoFe2O4 photocatalyst endowed with the specific recognition capability for selective photodegradation of ciprofloxacin, RSC Adv., 7 (2017) 48894–48903.
  7. D. Baeriswyl, D. Campbell, G. Clark, G. Harbeke, P. Kahol, H. Kiess, S. Mazumdar, M. Mehring, W. Rehwald, Conjugated Conducting Polymers, Springer Science & Business Media, 2012.
  8. G. Zotti, G. Schiavon, S. Zecchin, J.-F. Morin, M. Leclerc, Electrochemical, conductive, and magnetic properties of 2, 7-carbazole-based conjugated polymers, Macromolecules, 35 (2002) 2122–2128.
  9. H. Kim, B. Sohn, W. Lee, J.-K. Lee, S. Choi, S. Kwon, Multi-functional layer-by-layer self-assembly of conducting polymers and magnetic nanoparticles, Thin Solid Films, 419 (2002) 173–177.
  10. R. Gangopadhyay, A. De, Conducting polymer nanocomposites: a brief overview, Chem. Mater., 12 (2000) 608–622.
  11. R.M. Khafagy, Synthesis, characterization, magnetic and electrical properties of the novel conductive and magnetic polyaniline/MgFe2O4 nanocomposite having the core–shell structure, J. Alloys Comp., 509 (2011) 9849–9857.
  12. R. Asapu, N. Claes, S. Bals, S. Denys, C. Detavernier, S. Lenaerts, S.W. Verbruggen, Silver-polymer core-shell nanoparticles for ultra stable plasmon-enhanced photocatalysis, Appl. Catal. B: Environ., 200 (2017) 31–38.
  13. Y. Wang, B. Sun, J. Park, W.-S. Kim, H.-S. Kim, G. Wang, Morphology control and electrochemical properties of nanosize LiFePO4 cathode material synthesized by co-precipitation combined with in situ polymerization, J. Alloys Comp., 509 (2011) 1040–1044.
  14. N.E. Kazantseva, J. Vilčáková, V. Křesálek, P. Saha, I. Sapurina, J. Stejskal, Magnetic behaviour of composites containing polyaniline-coated manganese–zinc ferrite, J. Magn. Magn. Mater., 269 (2004) 30–37.
  15. L. Li, C. Xiang, X. Liang, B. Hao, Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O ferrite and its nanocomposites with polyaniline and polypyrrole: preparation and electromagnetic properties, Synth. Metals, 160 (2010) 28–34.
  16. Z. Lu, F. Chen, M. He, M. Song, Z. Ma, W. Shi, Y. Yan, J. Lan, F. Li, P. Xiao, Microwave synthesis of a novel magnetic imprinted TiO2 photocatalyst with excellent transparency for selective photodegradation of enrofloxacin hydrochloride residues solution, Chem. Eng. J., 249 (2014) 15–26.
  17. S. Bhukal, S. Bansal, S. Singhal, Magnetic Mn substituted cobalt zinc ferrite systems: structural, electrical and magnetic properties and their role in photo-catalytic degradation of methyl orange azo dye, Physica B: Condensed Matter., 445 (2014) 48–55.
  18. S. Bhukal, M. Dhiman, S. Bansal, M.K. Tripathi, S. Singhal, Substituted Co–Cu–Zn nanoferrites: synthesis, fundamental and redox catalytic properties for the degradation of methyl orange, RSC Adv., 6 (2016) 1360–1375.
  19. H. Assi, S. Atiq, S.M. Rammay, N.S. Alzayed, M. Saleem, S. Riaz, S. Naseem, Substituted Mg–Co-nanoferrite: recyclable magnetic photocatalyst for the reduction of methylene blue and degradation of toxic dyes, J. Mater. Sci.: Mater. Electron., 28 (2017) 2250–2256.
  20. M. Aamir, M.N. Ashiq, G. Yasmeen, B. Ahmad, M. Fahad Ehsan, T. He, Synthesis and characterization of polyaniline/Zr-Co-substituted nickel ferrite (NiFe1.2Zr0.4Co0.4O4) nanocomposites: their application for the photodegradation of methylene blue, Desal. Water Treat., 57 (2016) 12168–12177.
  21. R.S. N’Dri, M. Coulibaly, A.N.G. Yao, D. Bamba, E.G. Zoro, An electrochemical method for the determination of trace mercury (II) by formation of complexes with indigo carmine food dye and its analytical application, Int. J. Electrochem Sci., 11 (2016) 5342–5350.
  22. S. Gopi, P. Balakrishnan, A. Pius, S. Thomas, Chitin nanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of Indigo carmine, Carbohyd. Polym., 165 (2017) 115–122.
  23. P.C.G. Pereira, R.V. Reimão, T. Pavesi, E.M. Saggioro, J.C. Moreira, F.V. Correia, Lethal and sub-lethal evaluation of Indigo Carmine dye and byproducts after TiO2 photocatalysis in the immune system of Eisenia andrei earthworms, Ecotoxicol. Environ. Safety, 143 (2017) 275–282.
  24. T.N. Ramesh, V.P. Sreenivasa, Removal of indigo carmine dye from aqueous solution using magnesium hydroxide as an adsorbent, J. Mater., 2015 (2015) 10.
  25. M. de Keijzer, M.R. van Bommel, R.H.-d. Keijzer, R. Knaller, E. Oberhumer, Indigo carmine: Understanding a problematic blue dye, Stud. Conserv., 57 (2012) S87–S95.
  26. N. Barka, A. Assabbane, A. Nounah, Y.A. Ichou, Photocatalytic degradation of indigo carmine in aqueous solution by TiO2-coated non-woven fibres, J. Hazard. Mater., 152 (2008) 1054–1059.
  27. J. Jiang, L. Li, F. Xu, Polyaniline–LiNi ferrite core–shell composite: Preparation, characterization and properties, Mater. Sci. Eng., (2007) 300–304.
  28. Z. Lu, Z. Yu, J. Dong, M. Song, Y. Liu, X. Liu, Z. Ma, H. Su, Y. Yan, P. Huo, Facile microwave synthesis of a Z-scheme imprinted ZnFe2O4/Ag/PEDOT with the specific recognition ability towards improving photocatalytic activity and selectivity for tetracycline, Chem. Eng. J., 337 (2018) 228–241.
  29. Z. Lu, X. Zhao, Z. Zhu, Y. Yan, W. Shi, H. Dong, Z. Ma, N. Gao, Y. Wang, H. Huang, Enhanced re-cyclability, stability, and selectivity of CdS/C@ Fe3O4 nanoreactors for orientation photodegradation of ciprofloxacin, Chem.-Eur. J., 21 (2015) 18528–18533.
  30. S. Stewart, S. Figueroa, M. Sturla, R. Scorzelli, F. García, F. Requejo, Magnetic ZnFe2O4 nanoferrites studied by X-ray magnetic circular dichroism and Mössbauer spectroscopy, Physica B: Condensed Matter., 389 (2007) 155–158.
  31. U. Lima, M. Nasar, R. Nasar, M. Rezende, J. Araújo, Ni–Zn nanoferrite for radar-absorbing material, J. Magn. Magn. Mater., 320 (2008) 1666–1670.
  32. A. Salunkhe, V. Khot, M. Phadatare, N. Thorat, R. Joshi, H. Yadav, S. Pawar, Low temperature combustion synthesis and magneto structural properties of Co–Mn nanoferrites, J. Magn. Magn. Mater., 352 (2014) 91–98.
  33. B. Madhu, S. Ashwini, B. Shruthi, B. Divyashree, A. Manjunath, H. Jayanna, Structural, dielectric and electromagnetic shielding properties of Ni–Cu nanoferrite/PVP composites, Mater. Sci. Eng. B., 186 (2014) 1–6.
  34. E.E. Ateia, A.A. El-Bassuony, G. Abdelatif, F.S. Soliman, Novelty characterization and enhancement of magnetic properties of Co and Cu nanoferrites, J. Mater. Sci.: Mater. Electron., 28 (2017) 241–249.
  35. M. Trchová, J. Stejskal, Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report), Pure Appl. Chem., 83 (2011) 1803–1817.
  36. R. Al-Oweini, H. El-Rassy, Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si (OR) 4 and R''Si (OR') 3 precursors, J. Molec. Struct., 919 (2009) 140–145.
  37. C. Hu, Y. Tang, C.Y. Jimmy, P.K. Wong, Photocatalytic degradation of cationic blue X-GRL adsorbed on TiO2/SiO2 photocatalyst, Appl. Catal. B: Environ., 40 (2003) 131–140.