References
- E.E. Ateia, F.S. Soliman, Modification of Co/Cu nanoferrites
properties via Gd3+/Er3+ doping, Appl. Phys. A., 123 (2017)
312.
- P. Majewski, P. Krysiński, Synthesis, surface modifications,
and size-sorting of mixed nickel–zinc ferrite colloidal magnetic
nanoparticles, Chemistry - Eur. J., 14 (2008) 7961–7968.
- D. Nieciecka, K. Nawara, K. Kijewska, A.M. Nowicka, M.
Mazur, P. Krysinski, Solid-core and hollow magnetic nanostructures:
Synthesis, surface modifications and biological
applications, Bioelectrochemistry, 93 (2013) 2–14.
- V.A. Kolesov, C. Fuentes-Hernandez, W.-F. Chou, N. Aizawa,
F.A. Larrain, M. Wang, A. Perrotta, S. Choi, S. Graham, G.C.
Bazan, Solution-based electrical doping of semi conducting
polymer films over a limited depth, Nature Mater., 16 (2017)
474–480.
- H. Anwar, A. Maqsood, Comparison of structural and electrical
properties of Co2+ doped Mn-Zn soft nano ferrites prepared
via coprecipitation and hydrothermal methods, Mater. Res.
Bull., 49 (2014) 426–433.
- Z. Lu, Z. Yu, J. Dong, M. Song, Y. Liu, X. Liu, D. Fan, Z. Ma,
Y. Yan, P. Huo, Construction of stable core–shell imprinted
Ag-(poly-o-phenylenediamine)/CoFe2O4 photocatalyst
endowed with the specific recognition capability for selective
photodegradation of ciprofloxacin, RSC Adv., 7 (2017) 48894–48903.
- D. Baeriswyl, D. Campbell, G. Clark, G. Harbeke, P. Kahol, H.
Kiess, S. Mazumdar, M. Mehring, W. Rehwald, Conjugated
Conducting Polymers, Springer Science & Business Media,
2012.
- G. Zotti, G. Schiavon, S. Zecchin, J.-F. Morin, M. Leclerc, Electrochemical,
conductive, and magnetic properties of 2, 7-carbazole-based conjugated polymers, Macromolecules, 35 (2002)
2122–2128.
- H. Kim, B. Sohn, W. Lee, J.-K. Lee, S. Choi, S. Kwon, Multi-functional
layer-by-layer self-assembly of conducting polymers
and magnetic nanoparticles, Thin Solid Films, 419 (2002) 173–177.
- R. Gangopadhyay, A. De, Conducting polymer nanocomposites:
a brief overview, Chem. Mater., 12 (2000) 608–622.
- R.M. Khafagy, Synthesis, characterization, magnetic and electrical
properties of the novel conductive and magnetic polyaniline/MgFe2O4 nanocomposite having the core–shell structure,
J. Alloys Comp., 509 (2011) 9849–9857.
- R. Asapu, N. Claes, S. Bals, S. Denys, C. Detavernier, S. Lenaerts,
S.W. Verbruggen, Silver-polymer core-shell nanoparticles
for ultra stable plasmon-enhanced photocatalysis, Appl.
Catal. B: Environ., 200 (2017) 31–38.
- Y. Wang, B. Sun, J. Park, W.-S. Kim, H.-S. Kim, G. Wang, Morphology
control and electrochemical properties of nanosize
LiFePO4 cathode material synthesized by co-precipitation
combined with in situ polymerization, J. Alloys Comp., 509
(2011) 1040–1044.
- N.E. Kazantseva, J. Vilčáková, V. Křesálek, P. Saha, I. Sapurina,
J. Stejskal, Magnetic behaviour of composites containing polyaniline-coated manganese–zinc ferrite, J. Magn. Magn. Mater.,
269 (2004) 30–37.
- L. Li, C. Xiang, X. Liang, B. Hao, Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O ferrite
and its nanocomposites with polyaniline and polypyrrole:
preparation and electromagnetic properties, Synth. Metals,
160 (2010) 28–34.
- Z. Lu, F. Chen, M. He, M. Song, Z. Ma, W. Shi, Y. Yan, J. Lan, F.
Li, P. Xiao, Microwave synthesis of a novel magnetic imprinted
TiO2 photocatalyst with excellent transparency for selective
photodegradation of enrofloxacin hydrochloride residues
solution, Chem. Eng. J., 249 (2014) 15–26.
- S. Bhukal, S. Bansal, S. Singhal, Magnetic Mn substituted
cobalt zinc ferrite systems: structural, electrical and magnetic
properties and their role in photo-catalytic degradation
of methyl orange azo dye, Physica B: Condensed Matter., 445
(2014) 48–55.
- S. Bhukal, M. Dhiman, S. Bansal, M.K. Tripathi, S. Singhal,
Substituted Co–Cu–Zn nanoferrites: synthesis, fundamental
and redox catalytic properties for the degradation of methyl
orange, RSC Adv., 6 (2016) 1360–1375.
- H. Assi, S. Atiq, S.M. Rammay, N.S. Alzayed, M. Saleem, S.
Riaz, S. Naseem, Substituted Mg–Co-nanoferrite: recyclable
magnetic photocatalyst for the reduction of methylene blue
and degradation of toxic dyes, J. Mater. Sci.: Mater. Electron.,
28 (2017) 2250–2256.
- M. Aamir, M.N. Ashiq, G. Yasmeen, B. Ahmad, M. Fahad
Ehsan, T. He, Synthesis and characterization of polyaniline/Zr-Co-substituted nickel ferrite (NiFe1.2Zr0.4Co0.4O4) nanocomposites:
their application for the photodegradation of methylene
blue, Desal. Water Treat., 57 (2016) 12168–12177.
- R.S. N’Dri, M. Coulibaly, A.N.G. Yao, D. Bamba, E.G. Zoro, An
electrochemical method for the determination of trace mercury
(II) by formation of complexes with indigo carmine food
dye and its analytical application, Int. J. Electrochem Sci., 11
(2016) 5342–5350.
- S. Gopi, P. Balakrishnan, A. Pius, S. Thomas, Chitin nanowhisker
(ChNW)-functionalized electrospun PVDF membrane for
enhanced removal of Indigo carmine, Carbohyd. Polym., 165
(2017) 115–122.
- P.C.G. Pereira, R.V. Reimão, T. Pavesi, E.M. Saggioro, J.C.
Moreira, F.V. Correia, Lethal and sub-lethal evaluation of
Indigo Carmine dye and byproducts after TiO2 photocatalysis
in the immune system of Eisenia andrei earthworms, Ecotoxicol.
Environ. Safety, 143 (2017) 275–282.
- T.N. Ramesh, V.P. Sreenivasa, Removal of indigo carmine dye
from aqueous solution using magnesium hydroxide as an
adsorbent, J. Mater., 2015 (2015) 10.
- M. de Keijzer, M.R. van Bommel, R.H.-d. Keijzer, R. Knaller,
E. Oberhumer, Indigo carmine: Understanding a problematic
blue dye, Stud. Conserv., 57 (2012) S87–S95.
- N. Barka, A. Assabbane, A. Nounah, Y.A. Ichou, Photocatalytic
degradation of indigo carmine in aqueous solution by TiO2-coated non-woven fibres, J. Hazard. Mater., 152 (2008) 1054–1059.
- J. Jiang, L. Li, F. Xu, Polyaniline–LiNi ferrite core–shell composite:
Preparation, characterization and properties, Mater.
Sci. Eng., (2007) 300–304.
- Z. Lu, Z. Yu, J. Dong, M. Song, Y. Liu, X. Liu, Z. Ma, H. Su,
Y. Yan, P. Huo, Facile microwave synthesis of a Z-scheme
imprinted ZnFe2O4/Ag/PEDOT with the specific recognition
ability towards improving photocatalytic activity and selectivity
for tetracycline, Chem. Eng. J., 337 (2018) 228–241.
- Z. Lu, X. Zhao, Z. Zhu, Y. Yan, W. Shi, H. Dong, Z. Ma, N. Gao,
Y. Wang, H. Huang, Enhanced re-cyclability, stability, and selectivity
of CdS/C@ Fe3O4 nanoreactors for orientation photodegradation
of ciprofloxacin, Chem.-Eur. J., 21 (2015) 18528–18533.
- S. Stewart, S. Figueroa, M. Sturla, R. Scorzelli, F. García, F.
Requejo, Magnetic ZnFe2O4 nanoferrites studied by X-ray
magnetic circular dichroism and Mössbauer spectroscopy,
Physica B: Condensed Matter., 389 (2007) 155–158.
- U. Lima, M. Nasar, R. Nasar, M. Rezende, J. Araújo, Ni–Zn
nanoferrite for radar-absorbing material, J. Magn. Magn.
Mater., 320 (2008) 1666–1670.
- A. Salunkhe, V. Khot, M. Phadatare, N. Thorat, R. Joshi, H.
Yadav, S. Pawar, Low temperature combustion synthesis and
magneto structural properties of Co–Mn nanoferrites, J. Magn.
Magn. Mater., 352 (2014) 91–98.
- B. Madhu, S. Ashwini, B. Shruthi, B. Divyashree, A. Manjunath,
H. Jayanna, Structural, dielectric and electromagnetic
shielding properties of Ni–Cu nanoferrite/PVP composites,
Mater. Sci. Eng. B., 186 (2014) 1–6.
- E.E. Ateia, A.A. El-Bassuony, G. Abdelatif, F.S. Soliman, Novelty
characterization and enhancement of magnetic properties
of Co and Cu nanoferrites, J. Mater. Sci.: Mater. Electron., 28
(2017) 241–249.
- M. Trchová, J. Stejskal, Polyaniline: The infrared spectroscopy
of conducting polymer nanotubes (IUPAC Technical Report),
Pure Appl. Chem., 83 (2011) 1803–1817.
- R. Al-Oweini, H. El-Rassy, Synthesis and characterization by
FTIR spectroscopy of silica aerogels prepared using several Si
(OR) 4 and R''Si (OR') 3 precursors, J. Molec. Struct., 919 (2009)
140–145.
- C. Hu, Y. Tang, C.Y. Jimmy, P.K. Wong, Photocatalytic degradation
of cationic blue X-GRL adsorbed on TiO2/SiO2 photocatalyst,
Appl. Catal. B: Environ., 40 (2003) 131–140.