References
- N. Bolong, A.F. Ismail, M.R. Salim, T. Matsuura, A review
of the effects of emerging contaminants in wastewater and
options for their removal, Desalination, 239 (2009) 229–246.
- A. Cano-Odena, M. Spilliers, T. Dedroog, K. De Grave, J.
Ramon, I.F.J. Vankelecom, Optimization of cellulose acetate
nanofiltration membranes for micro pollutant removal via
genetic algorithms and high throughput experimentation, J.
Membr. Sci., 366 (2011) 25–32.
- R. Haddad, E. Ferjani, M.S. Roudesli, A. Deratani, Properties
of cellulose acetate nanofiltration membranes. Application to
brackish water desalination, Desalination, 167 (2004) 403–409.
- Z. Li, J. Ren, A.G. Fane, D.F. Li, F.S. Wong, Influence of solvent
on the structure and performance of cellulose acetate membranes,
J. Membr. Sci., 279 (2006) 601–607.
- S.H. Ye, J. Watanabe, Y. Iwasaki, K. Ishihara, Novel cellulose acetate
membrane blended with phospholipid polymer for hemocompatible
filtration system, J. Membr. Sci., 210 (2002) 411–421.
- A.W. Zularisam, A.F. Ismail, M.R. Salim, M. Sakinah, H. Ozaki,
The effects of natural organic matter (NOM) fractions on fouling
characteristics and flux recovery of ultra filtration membranes,
Desalination, 212 (2007) 191–208.
- T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix
membranes (MMMs) comprising organic polymers with dispersed
inorganic fillers for gas separation, Prog. Polym. Sci., 32
(2007) 483–507.
- N. Ag, Materials Chemistry A., (2014) 1750–1756. doi:10.1039/c3ta14286h.
- Y. Yang, H. Zhang, P. Wang, Q. Zheng, J. Li, The influence of
nano-sized TiO2 fillers on the morphologies and properties of
PSF UF membrane, J. Membr. Sci., 288 (2007) 231–238.
- N. Rakhshan, M. Pakizeh, The effect of functionalized SiO2
nanoparticles on the morphology and triazines separation
properties of cellulose acetate membranes, J. Ind. Eng. Chem.,
34 (2016) 51–60.
- C.H. Worthley, K.T. Constantopoulos, M. Ginic-Markovic, E.
Markovic, S. Clarke, A study into the effect of POSS nanoparticles
on cellulose acetate membranes, J. Membr. Sci., 431 (2013)
62–71.
- L.A.N. El-Din, A. El-Gendi, N. Ismail, K.A. Abed, A.I. Ahmed,
Evaluation of cellulose acetate membrane with carbon nanotubes
additives, J. Ind. Eng. Chem., 26 (2015) 259–264.
- N. El Badawi, A.R. Ramadan, A.M.K. Esawi, M. El-Morsi,
Novel carbon nanotube–cellulose acetate nanocomposite
membranes for water filtration applications, Desalination, 344
(2014) 79–85.
- H. a. Shawky, S.-R. Chae, S. Lin, M.R. Wiesner, Synthesis and
characterization of a carbon nanotube/polymer nanocomposite
membrane for water treatment, Desalination, 272 (2011)
46–50.
- W. Choi, J. Choi, J. Bang, J. Lee, Layer-by-layer assembly of
graphene oxide nanosheets on polyamide membranes for
durable reverse osmosis applications, ACS Appl. Mater. Interfaces,
(2013) Ahead of Print, doi:10.1021/am403790s.
- Z. Wang, H. Yu, J. Xia, F. Zhang, F. Li, Y. Xia, Y. Li, Novel
GO-blended PVDF ultra filtration membranes, Desalination,
299 (2012) 50–54.
- S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour, H.
Zangeneh, Preparation of a novel anti-fouling mixed matrix
PES membrane by embedding graphene oxide nanoplates, J.
Membr. Sci., 453 (2014) 292–301.
- B.M. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity
and salt rejection study of graphene oxide-polysulfone
mixed matrix membrane, Desalination, 313 (2013) 199–207.
- S. Yi, Y. Su, B. Qi, Z. Su, Y. Wan, Application of response surface
methodology and central composite rotatable design in
optimizing the preparation conditions of vinyltriethoxysilane
modified silicalite/polydimethylsiloxane hybrid pervaporation
membranes, Sep. Purif. Technol., 71 (2010) 252–262.
- A. Maher, M. Sadeghi, A. Moheb, Heavy metal elimination
from drinking water using nanofiltration membrane technology
and process optimization using response surface methodology,
Desalination, 352 (2014) 166–173.
- H.P. Ngang, A.L. Ahmad, S.C. Low, B.S. Ooi, Preparation of
mixed-matrix membranes for micellar enhanced ultra filtration
based on response surface methodology, Desalination,
293 (2012) 7–20.
- M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network
modeling and response surface methodology of desalination
by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
- Y. Shi, C. Li, D. He, L. Shen, N. Bao, Preparation of graphene
oxide–cellulose acetate nanocomposite membrane for highflux
desalination, J. Mater. Sci., 52 (2017) 13296–13306.
- S.M. Ghaseminezhad, M. Barikani, M. Salehirad, Development
of graphene oxide-cellulose acetate nanocomposite reverse
osmosis membrane for seawater desalination, Compos. Part B
Eng., 161 (2019) 320–327.
- K. Chen, C. Xiao, Q. Huang, H. Liu, Y. Tang, Fabrication and
properties of graphene oxide-embedded cellulose triacetate
RO composite membrane via melting method, Desalination,
425 (2018) 175–184.
- I. Pinnau, Membrane separations/membrane preparation,
Encycl. Sep. Sci., (2000) 1755–1764.
- S.S. Eslah, S. Shokrollahzadeh, O.M. Jazani, A. Samimi, Forward
osmosis water desalination: Fabrication of graphene
oxide-polyamide/polysulfone thin-film nanocomposite membrane
with high water flux and low reverse salt diffusion, Sep.
Sci. Technol., 53 (2018) 573–583.
- M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira,
Response surface methodology (RSM) as a tool for optimization
in analytical chemistry, Talanta, 76 (2008) 965–977.
- N. Amenaghawon, K.I. Nwaru, F. a. Aisien, S.E. Ogbeide, C.O.
Okieimen, Application of Box-Behnken design for the optimization
of citric acid production from corn starch using Aspergillus
niger., Br. Biotechnol. J., 3 (2013) 236–245.
- P. Qiu, M. Cui, K. Kang, B. Park, Y. Son, E. Khim, M. Jang, J.
Khim, Application of Box-Behnken design with response surface
methodology for modeling and optimizing ultrasonic
oxidation of arsenite with H2O2, Cent. Eur. J. Chem., 12 (2014)
164–172.
- M. Safarpour, A. Khataee, V. Vatanpour, Thin film nanocomposite
reverse osmosis membrane modified by reduced
graphene oxide/TiO2 with improved desalination performance,
J. Membr. Sci., 489 (2015) 43–54.
- D.P. Suhas, A.V. Raghu, H.M. Jeong, T.M. Aminabhavi,
Graphene-loaded sodium alginate nanocomposite membranes
with enhanced isopropanol dehydration performance via a
pervaporation technique, RSC Adv., 3 (2013) 17120.
- S.P. Dharupaneedi, R.V. Anjanapura, J.M. Han, T.M.
Aminabhavi, Functionalized graphene sheets embedded in
chitosan nanocomposite membranes for ethanol and isopropanol
dehydration via pervaporation, Ind. Eng. Chem. Res., 53
(2014) 14474–14484.
- K.a. Mahmoud, B. Mansoor, A. Mansour, M. Khraisheh, Functional
graphene nanosheets: The next generation membranes
for water desalination, Desalination, 356 (2015) 208–225.
- Q. Wang, N. Li, B. Bolto, M. Hoang, Z. Xie, Desalination by
pervaporation: A review, Desalination, 387 (2016) 46–60.
- C.H. Cho, K.Y. Oh, S.K. Kim, J.G. Yeo, P. Sharma, Pervaporative
seawater desalination using NaA zeolite membrane: Mechanisms
of high water flux and high salt rejection, J. Membr. Sci.,
371 (2011) 226–238.
- L. He, L.F. Dumée, C. Feng, L. Velleman, R. Reis, F. She, W.
Gao, L. Kong, Promoted water transport across graphene
oxide-poly(amide) thin film composite membranes and their
antibacterial activity, Desalination, 365 (2015) 126–135.
- D. Li, L. He, D. Dong, M. Forsyth, H. Wang, Preparation of
silicalite-polyamide composite membranes for desalination,
Asia-Pacific J. Chem. Eng., 7 (2012) 434–441.
- R.W. Baker, Reverse Osmosis, in: Membr. Technol. Appl., John
Wiley & Sons, Ltd, Chichester, UK, 2012: pp. 207–251.
- Y. Gao, M. Hu, B. Mi, Membrane surface modification with
TiO2–graphene oxide for enhanced photo catalytic performance,
J. Membr. Sci., 455 (2014) 349–356.
- D. Zhang, X. Wen, L. Shi, T. Yan, J. Zhang, Enhanced capacitive
deionization of graphene/mesoporous carbon composites,
Nanoscale, 4 (2012) 5440.
- X. Wen, D. Zhang, T. Yan, J. Zhang, L. Shi, Three-dimensional
graphene-based hierarchically porous carbon composites prepared
by a dual-template strategy for capacitive deionization,
J. Mater. Chem. A., 1 (2013) 12334.
- H.J. Kim, K. Choi, Y. Baek, D.G. Kim, J. Shim, J. Yoon, J.C. Lee,
High-performance reverse osmosis CNT/polyamide nanocomposite
membrane by controlled inter facial interactions,
ACS Appl. Mater. Interfaces, 6 (2014) 2819–2829.
- J.K. Holt, Fast mass transport through sub-2-nanometer carbon
nanotubes, Science, 312 (2006) 1034–1037.
- G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction
through the hydrophobic channel of a carbon nanotube,
Nature, 414 (2001) 188–190.
- H.D. Lee, H.W. Kim, Y.H. Cho, H.B. Park, Experimental evidence
of rapid water transport through carbon nanotubes
embedded in polymeric desalination membranes, Small, 10
(2014) 2653–2660.
- S. Karan, S. Samitsu, X. Peng, K. Kurashima, I. Ichinose,
Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets, Science, 335 (2012) 444–447.
- B.J. Hinds, Aligned multi-walled carbon nanotube membranes,
Science, 303 (2004) 62–65.
- S. Xia, L. Yao, Y. Zhao, N. Li, Y. Zheng, Preparation of graphene
oxide modified polyamide thin film composite membranes
with improved hydrophilicity for natural organic matter
removal, Chem. Eng. J., 280 (2015) 720–727.
- H. Wang, L. Shi, T. Yan, J. Zhang, Q. Zhong, D. Zhang, Design
of graphene-coated hollow mesoporous carbon spheres as
high performance electrodes for capacitive deionization, J.
Mater. Chem. A., 2 (2014) 4739–4750.
- M.E.A. Ali, L. Wang, X. Wang, X. Feng, Thin film composite
membranes embedded with graphene oxide for water desalination,
Desalination, 386 (2016) 67–76.
- R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim,
Unimpeded permeation of water through helium-leak-tight
graphene-based membranes, Science, 335 (2012) 442–444.
- B. Feng, K. Xu, A. Huang, Covalent synthesis of three-dimensional
graphene oxide framework (GOF) membrane for seawater
desalination, Desalination, 394 (2016) 123–130.
- B.S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal, A review on
membrane fabrication: Structure, properties and performance
relationship, Desalination, 326 (2013) 77–95.