References
- M.C. Jami, I.A. Husain, N.A. Abdullah, Multiple inputs artificial
neural network model for the prediction of wastewater
treatment plant performance, J. AJBAS., 6(1) (2012) 62–69.
- D. Hanby, I. Tukoglu, Y. Demir, Prediction of wastewater treatment
plant performance based on wavelet packet decomposition
and neural networks, Expert Syst. Appl., 34(2) (2008)
1038–1043.
- C.H. Wen, C.A. Vassiliadis, Applying hybrid artificial intelligence
techniques in wastewater treatment, Eng. Appl. ArtifIntell.,
11(6) (1998) 685–705.
- I. Zaheer, C.G. Bai, Application of artificial neural network for
water quality management, LTI., 5(2) (2003) 10–15.
- A. Nabavi-Pelesaraei, R. Bayat, H. Hosseinzadeh-Bandbafha,
H. Afrasyabi, K.W. Chau, Modeling of energy consumption
and environmental life cycle assessment for incineration and
landfill systems of municipal solid waste management-A case
study in Tehran Metropolis of Iran, J. Clean Prod., 148 (2107)
427–440.
- Y. Seo, S. Kim, V.P. Singh, Comparison of different heuristic
and decomposition techniques for river stage modeling, Environ.
Monit. Assess., 190(7) (2018) 392.
- E. Olyaie, H. Banejad, K.W. Chau, A.M. Melesse, A comparison
of various artificial intelligence approaches performance for
estimating suspended sediment load of river systems: A case
study in United States, Environ. Monit. Assess., 187(4) (2015)
189.
- S. Shamshirband, E. Jafari Nodoushan, J.E. Adolf, A. Abdul
Manaf, A. Mosavi, K.W. Chau, Ensemble models with uncertainty
analysis for multi-day ahead forecasting of chlorophyll a
concentration in coastal waters, Eng. Appl. Comp. Fluid., 13(1)
(2019) 91–101.
- M. Djeddou, B. Achour, The use of a neural network technique
for the prediction of sludge volume index in municipal wastewater
treatment plant, LARHYSS J., 24 (2015) 351–370.
- I. Lou, Y. Zhao, Sludge bulking prediction using principle component
regression and artificial neural network, Math. Probl.
Eng., (2012) Article ID 237693.
- E. Dogan, A. Ates, E.C. Yilmaz, B. Eren, Application of artificial
neural networks to estimate wastewater treatment plant inlet
biochemical oxygen demand, Environ. Prog. Sustain., 27(4)
(2008) 439–446.
- A.E. Tumer, S. Edebali, An artificial neural network model
for wastewater treatment plant of Konya, IJISAE., 3(4) (2015)
131–13.
- M. Vyas, B. Modhera, V. Vyas, A.k. Sharma, Performance forecasting
of common effluent treatment plant parameters by
artificial neural network, JEAS., 6(1) (2011) 38–42.
- D.J. Choi, H. Park, A hybrid artificial neural network as a software
sensor for optimal control of a wastewater treatment process,
Water Res., 35(16) (2001) 3959–3967.
- M.M. Hamed, M.G. Khalafallah, E.A. Hassanien, Prediction of
wastewater treatment plant performance using artificial neural
networks, Environ. Model Softw., 19(10) (2004) 919–928.
- S.I. Abba, G. Elkiran, Effluent prediction of chemical oxygen
demand from the WWTP using artificial neural network
application, Procedia. Comput. Sci., 120 (2017) 156–163.
- H.G. Han, J.F. Qiao, Q.L. Chen, Model predictive control of dissolved
oxygen concentration based on a self-organizing RBF
neural network, Control. Eng. Pract., 20(4) (2012) 465–476.
- Y.S.T. Hong, M.R. Rosen, R. Bhamidimarri, Analysis of a municipal
wastewater treatment plant using a neural network-based
pattern analysis, Water Res., 37(7) (2003) 1608–1618.
- G.J. Bowden, G.C. Dandy, H.R. Maier, Input determination for
neural network models in water resources applications. Part
1—background and methodology, J. Hydrol., 301(4) (2005)
75–92.
- S.E. Kim, I.S. Won, Artificial Neural Network ensemble modeling
with conjunctive data clustering for water quality prediction
in rivers, J. Hydro-Environ. Res., 9(3) (2015) 325–339.
- J. Wan, Prediction of effluent quality of a paper mill wastewater
treatment using an adaptive network-based fuzzy inference
system, Appl. Soft. Comput., 11(3) (2011) 3238–3246.
- V. Nourani, M. Mehrvand, A.H. Baghanam, Implication of
SOM-ANN based clustering for multistation rainfall-runoff
modeling, JUEE., 8(2) (2014) 198–210.
- T.Y. Pai, P.Y. Yang, S.C. Wang, M.H. Lo, C.F. Chiang, J.L. Kuo,
Y.H. Chang, Predicting effluent from the wastewater treatment
plant of industrial park based on fuzzy network and influent
quality, Appl. Math. Model., 35(8) (2011) 3674–3684.
- O. Çinar, New tool for evaluation of performance of wastewater
treatment plant: artificial neural network, Process Biochem.,
40(9) (2005) 2980–2984.
- T. Kohonen, The self-organizing map, Neurocomputing., 21(1–3) (1998) 1–6.
- K.K. Jassar, K.S. Dhindsa, Comparative study and performance
analysis of clustering algorithms, IJCA, 975 (2015)
8887.
- D. Aguado, T. Montoya, L. Borras, A. Seco, J. Ferrer, Using SOM
and PCA for analyzing and interpreting data from a P-removal
SBR, Eng. Appl. ArtifIntell., 21(6) (2008) 919–930.
- R. Sathya, A. Abraham, Comparison of supervised and unsupervised
learning algorithms for pattern classification, IJARAI.,
2(2) (2013) 34–38.
- V. Nourani, G. Andalib, D. Dąbrowska, Conjunction of wavelet
transform and SOM-mutual information data pre-processing
approach for AI-based Multi-Station nitrate modeling of
watersheds, J. Hydrol., 548 (2017) 170–183.
- J. Qiao, H. Zhiqiang, L. Wenjing, Soft measurement modeling
based on chaos theory for biochemical oxygen demand (BOD),
Water., 8(12) (2016) 581.
- D.A. Cancilla, X. Fang, Evaluation and quality control of
environmental analytical data from the Niagara River using
multiple chemometric methods, Great Lakes Res., 22(2) (1996)
241–253.
- T.R. Holcomb, M. Morari, PLS/neural networks, Comput.
Chem. Eng., 16(4) (1992) 393–411.
- A. Singh, M. Imtiyaz, R.K. Isaac, D.M. Denis, Comparison of
soil and water assessment tool (SWAT) and multilayer perceptron
(MLP) artificial neural network for predicting sediment
yield in the Nagwa agricultural watershed in Jharkhand,
India, Agr. Water Manage., 104 (2012) 113–120.
- K. Hornik, S. Maxwell, W. Halbert, Multilayer feed forward
networks are universal approximators, Neural Netw., 2(5)
(1989) 359–366.
- T.W. Kim, J.B. Valdés, Nonlinear model for drought forecasting
based on a conjunction of wavelet transforms and neural networks,
J. Hydrol. Eng., 8(6) (2003) 319–328.
- A.R. Pendashteh, A. Fakhru’l-Razi, N. Chaibakhsh, L.C.
Abdullah, S.S. Madaeni, Z.Z. Abidin, Modeling of membrane
bioreactor treating hypersaline oily wastewater by artificial
neural network, J. Hazard. Mater., 192(2) (2011) 568–575.
- D.R. Legates, J.G. McCabe, Evaluating the use of “goodness-offit”
measures in hydrologic and hydroclimatic model validation,
Water Resour. Res., 35(1) (1999) 233–241.
- G.B. Sahoo, C. Ray, Predicting flux decline in crossflow membranes
using artificial neural networks and genetic algorithms,
J Membr. Sci., 283 (2006) 147–157.
- C. Rosén, J. Röttorp, U. Jeppsson, Multivariate on-line monitoring:
challenges and solutions for modern wastewater treatment
operation, Water Sci. Technol., 47(2) (2003) 171–179.
- P. Teppola, S.P. Mujunen, P. Minkkinen, A combined approach
of partial least squares and fuzzy c-means clustering for the
monitoring of an activated- sludge waste-water treatment
plant, ChemometrIntell. Lab. Syst., 41(1) (1998) 95–103.
- H. Çamdevýren, N. Demýr, A. Kanik, S. Keskýn, Use of principal
component scores in multiple linear regression models for
prediction of Chlorophyll-a in reservoirs, Ecol. Modell., 181(4)
(2005) 581–589.
- J.C. Davis, Statistical and Data Analysis in Geology, 2nd ed,
John Wiley and Sons. New York, 1986.
- H. Wackernagel, Multivariate Geostatistics: An Introduction
With Applications, New York and London, 1995.
- R. Steuer, J. Kurths, C.O. Daub, J. Weise, J. Selbig, The mutual
information detecting and evaluating dependencies between
variables, Bioinformatics, 18(2) (2002) 231–240.
- C.E. Shannon, A note on the concept of entropy, Bell System
Tech J., 27(3) (1948) 379–423.
- M.S. Babel, G.B. Badgujar, V.R. Shinde, Using the mutual information
technique to select explanatory variables in artificial
neural networks for rainfall forecasting, Meteorol. Appl., 22(3)
(2015) 610–616.
- T.M. Cover, J.A. Thomas, Elements of information theory, John
Wiley & Sons, 2012.
- R.K. Parviz, N. Mozayani, M.J. Motlagh, Mutual information-based input variable selection algorithm and wavelet
neural network for time series prediction, International Conference
on Artificial Neural Networks. Springer, Berlin, Heidelberg,
2008.
- G. Brown, A. Pocock, M.J. Zhao, M. Luján, Conditional likelihood
maximisation: a unifying framework for information
theoretic feature selection, J. Mach. Learn. Res., (2012) 27–66.
- T. Kohonen, Self-Organizing Maps, Springer, 1997.
- H.L. Garcıá , I.M. González, Self-organizing map and clustering
for wastewater treatment monitoring, Eng. Appl. ArtifIntell.,
17(3) (2004) 215–225.
- T. Kohonen, S. Kaski, H. Lappalainen, Self-organized formation
of various invariant-feature filters in the adaptive-subspace
SOM, Neural. Comput., 9(6) (1997) 1321–1344.
- M. Hamada, A.Z. Hossam, A.J. Ahmed, Application of artificial
neural networks for the prediction of Gaza wastewater
treatment plant performance-Gaza strip, JARWW., 5(1) (2018)
399–406.
- A. Sharma, C.W. Omlin, Performance comparison of particle
swarm optimization with traditional clustering algorithms used
in self organizing map, Int. J. Comput. Int. Sys., 5(1) (2019) 1–12.