References
- A. Pal, Y. He, M. Jekel, M. Reinhard, K.Y.-H. Gin, Emerging
contaminants of public health significance as water quality
indicator compounds in the urban water cycle, Environ. Int.,
71 (2014) 46–62.
- Y. Ding, W. Sun, W. Yang, Q. Li, Formic acid as the in-situ
hydrogen source for catalytic reduction of nitrate in water by
PdAg alloy nanoparticles supported on amine-functionalized
SiO2, Appl. Catal. B: Environ., 203 (2017) 372–380.
- N. NHMRC, Australian drinking water guidelines paper 6
national water quality management strategy. National Health
and Medical Research Council, National Resource Management
Ministerial Council, Commonwealth of Australia, Canberra,
2011.
- J.A. Camargo, Á. Alonso, Ecological and toxicological effects
of inorganic nitrogen pollution in aquatic ecosystems: a global
assessment, Environ. Int., 32(6) (2006) 831–849.
- P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N.
Morris, J. Pham, R. He, H.-J. Choi, Controlled growth of ZnO
nanowires and their optical properties, Adv. Funct. Mater.,
12(5) (2002) 323.
- M. Ahmad, J. Zhu, ZnO based advanced functional nanostructures:
synthesis, properties and applications, J. Mater. Chem.,
21(3) (2011) 599–614.
- O. Akhavan, Photocatalytic reduction of graphene oxides
hybridized by ZnO nanoparticles in ethanol, Carbon, 49(1)
(2011) 11–18.
- O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad,
Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic
inactivation of bacteria, J. Physics D: Appl. Phys., 42(22)
(2009) 225305.
- F. Liu, Y.H. Leung, A.B. Djurišic,́ A.M.C. Ng, W.K. Chan, K.L.
Ng, K.S. Wong, C. Liao, K. Shih, C. Surya, Effect of plasma
treatment on native defects and photocatalytic activities of
zinc oxide tetrapods, J. Phys. Chem. C, 118(39) (2014) 22760–22767.
- J. Xiao, T. Frauenheim, T. Heine, A. Kuc, Temperature-mediated
magnetism in Fe-doped ZnO semiconductors, J. Phys.
Chem. C, 117(10) (2013) 5338–5342.
- Z. Chen, N. Zhang, Y.-J. Xu, Synthesis of graphene–ZnO
nanorod nanocomposites with improved photoactivity and
anti-photocorrosion, Cryst. Eng. Comm., 15(15) (2013) 3022–3030.
- K. Kumar, M. Chitkara, I.S. Sandhu, D. Mehta, S. Kumar, Photocatalytic,
optical and magnetic properties of Fe-doped ZnO
nanoparticles prepared by chemical route, J. Alloys Comp., 588
(2014) 681–689.
- X.-C. Liu, E.-W. Shi, Z.-Z. Chen, H.-W. Zhang, L.-X. Song, H.
Wang, S.-D. Yao, Structural, optical and magnetic properties
of Co-doped ZnO films, J. Crystal Growth, 296(2) (2006) 135–140.
- Z. Wu, K. Cheng, F. Zhang, R. Guan, X. Wu, L. Zhuge, Effect
of Al co-doping on the electrical and magnetic properties of
Cu-doped ZnO nanorods, J. Alloys Comp., 615 (2014) 521–525.
- W.-H. Kim, J.Y. Son, Room temperature magneto resistance
of horizontally aligned Mn-doped ZnO nanowires on terrace
edges, Mater. Lett., 133 (2014) 101–104.
- J. Park, G. Park, H.-J. Ko, J.-S. Ha, The effect of ITO/Mo/MoO3
anode multilayer film on efficient hole extraction in MEH–PPV/ZnO NP hybrid solar cells, Ceramics Int., 40(10) (2014)
16281–16285.
- K. Shinde, R. Pawar, B. Sinha, H. Kim, S. Oh, K. Chung, Optical
and magnetic properties of Ni doped ZnO planetary ball
milled nanopowder synthesized by co-precipitation, Ceramics
Int., 40(10) (2014) 16799–16804.
[
- O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts,
ACS Nano, 4(7) (2010) 4174–4180.
- B. Li, T. Liu, Y. Wang, Z. Wang, ZnO/graphene-oxide nanocomposite
with remarkably enhanced visible-light-driven
photocatalytic performance, J. Colloid Interface Sci., 377(1)
(2012) 114–121.
- J. Wang, T. Tsuzuki, B. Tang, X. Hou, L. Sun, X. Wang, Reduced
graphene oxide/ZnO composite: reusable adsorbent for pollutant
management, ACS Appl. Mater. Interfaces, 4(6) (2012)
3084–3090.
- C. Wen, F. Liao, S. Liu, Y. Zhao, Z. Kang, X. Zhang, M. Shao,
Bi-functional ZnO–RGO–Au substrate: photocatalysts for
degrading pollutants and SERS substrates for real-time monitoring,
Chem. Commun., 49(29) (2013) 3049–3051.
- K.I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J.
Hone, P. Kim, H. Stormer, Ultrahigh electron mobility in
suspended graphene, Solid State Commun., 146(9) (2008)
351–355.
- D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry,
Chem. Soc. Rev., 39(8) (2010) 3157–3180.
- D. Li, R.B. Kaner, Graphene-based materials, Nat. Nanotechnol.,
3 (2008) 101.
- M.-Q. Yang, N. Zhang, M. Pagliaro, Y.-J. Xu, Artificial photosynthesis
over graphene–semiconductor composites. Are we
getting better? Chem. Soc. Rev., 43(24) (2014) 8240–8254.
- T. Xu, L. Zhang, H. Cheng, Y. Zhu, Significantly enhanced
photocatalytic performance of ZnO via graphene hybridization
and the mechanism study, Appl. Catal. B: Environ., 101(3)
(2011) 382–387.
- J. Zhai, L. Sun, H. Yu, H. Li, X. Zhang, H. Yang, J. Xu, A facile
approach of fabricating graphene-encapsulated ZnO microspheres
and their synergic effect on photocatalytic performance,
J. Nanopart. Res., 16(6) (2014) 2433.
- T. Li, Y. He, H. Lin, J. Cai, L. Dong, X. Wang, M. Luo, L. Zhao,
X. Yi, W. Weng, Synthesis, characterization and photocatalytic
activity of visible-light plasmonic photocatalyst AgBr-SmVO4.
Appl. Catal. B: Environ., 138 (2013) 95–103.
- D. Wang, Y. Duan, Q. Luo, X. Li, L. Bao, Visible light photocatalytic
activities of plasmonic Ag/AgBr particles synthesized by
a double jet method, Desalination, 270 (2011) 174–180.
- C. An, W. Jiang, J. Wang, S. Wang, Z. Ma, Y. Li, Synthesis of
three-dimensional AgI@TiO2 nanoparticles with improved
photocatalytic performance, Dalton Trans., 42(24) (2013) 8796–8801.
- K. Dai, J. Lv, L. Lu, Q. Liu, G. Zhu, D. Li, Synthesis of micronano
heterostructure AgBr/ZnO composite for advanced visible
light photocatalysis, Mater. Lett., 130 (2014) 5–8.
- B. Krishnakumar, B. Subash, M. Swaminathan, AgBr–ZnO–An efficient nano-photocatalyst for the mineralization of
Acid Black 1 with UV light, Separ. Purif. Technol., 85 (2012)
35–44.
- L. Shi, L. Liang, J. Ma, J. Sun, Improved photocatalytic performance
over AgBr/ZnO under visible light, Superlatt. Microstruct.,
62 (2013) 128–139.
- C. Wu, L. Shen, Y.C. Zhang, Q. Huang, Synthesis of AgBr/ZnO
nanocomposite with visible light-driven photocatalytic activity,
Mater. Lett., 66(1) (2012) 83–85.
- Y. Xing, R. Li, Q. Li, J. Yang, A new method of preparation of
AgBr/TiO2 composites and investigation of their photocatalytic
activity, J. Nanopart. Res., 14(12) (2012) 1284.
- J. Yi, L. Huang, H. Wang, H. Yu, F. Peng, AgI/TiO2 nanobelts
monolithic catalyst with enhanced visible light photocatalytic
activity, J. Hazard. Mater., 284 (2015) 207–214.
- Y. Zang, R. Farnood, Photocatalytic activity of AgBr/TiO2 in
water under simulated sunlight irradiation, Applied Catal. B:
Environ., 79(4) (2008) 334–340.
- J. Lu, H. Wang, Y. Dong, F. Wang, S. Dong, Plasmonic AgX
nanoparticles-modified ZnO nanorod arrays and their visible-light-driven photocatalytic activity, Chinese J. Catal., 35(7)
(2014) 1113–1125.
- K. Vignesh, A. Suganthi, M. Rajarajan, S. Sara, Photocatalytic
activity of AgI sensitized ZnO nanoparticles under visible
light irradiation, Powder Technol., 224 (2012) 331–337.
- R. Hong, L. Ding, C. Tao, D. Zhang, In situ synthesis of
graphene/zinc oxide composite by thermal decomposition of
zinc acetate, Int. J. Nanotechnol., 12(10–12) (2015) 811–817.
- S. Parastar, S. Nasseri, S.H. Borji, M. Fazlzadeh, A.H. Mahvi,
A.H. Javadi, M. Gholami, Application of Ag-doped TiO2
nanoparticle prepared by photodeposition method for nitrate
photocatalytic removal from aqueous solutions, Desal. Water
Treat., 51(37–39) (2013) 7137–7144.
- F. Hosseini, A. Kasaeian, F. Pourfayaz, M. Sheikhpour, D. Wen,
Novel ZnO-Ag/MWCNT nanocomposite for the photocatalytic
degradation of phenol, Mater. Sci. Semicond. Process., 83
(2018) 175–185.
- S. Shaker-Agjekandy, A. Habibi-Yangjeh, Ultrasonic-assisted
preparation of novel ternary ZnO/AgI/Ag2CrO4 nanocomposites
as visible-light-driven photocatalysts with excellent activity,
Mater. Sci. Semicond. Process., 44 (2016) 48–56.
- S.R. Morrison, Electrochemistry at semiconductor and oxidized
metal electrodes. 1980.
- H. Huang, N. Huang, Z. Wang, G. Xia, M. Chen, L. He, Z. Tong,
C. Ren, Room-temperature synthesis of carnation-like ZnO@
AgI hierarchical nanostructures assembled by AgI nanoparticles-decorated ZnO nanosheets with enhanced visible light
photocatalytic activity, J. Colloid Interface Sci., 502 (2017)
77–88.
- Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor
photocatalysts, Chem. Soc. Rev., 41(2) (2012) 782–796.
- M. Sancho, S. Álvarez-Blanco, G. Kombo, B. García-Fayos,
Experimental determination of nanofiltration models: application
to nitrate removal, Desal. Water Treat., 57(48–49) (2016)
22852–22859.
- R. Rezaee, S. Nasseri, A.H. Mahvi, R. Nabizadeh, S.A. Mousavi,
A. Maleki, M. Alimohammadi, A. Jafari, S. Hemmati Borji,
Development of a novel graphene oxide-blended polysulfone
mixed matrix membrane with improved hydrophilicity and
evaluation of nitrate removal from aqueous solutions, Chem.
Eng. Commun., 206(4) (2019) 495–508.