References

  1. A. Pal, Y. He, M. Jekel, M. Reinhard, K.Y.-H. Gin, Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle, Environ. Int., 71 (2014) 46–62.
  2. Y. Ding, W. Sun, W. Yang, Q. Li, Formic acid as the in-situ hydrogen source for catalytic reduction of nitrate in water by PdAg alloy nanoparticles supported on amine-functionalized SiO2, Appl. Catal. B: Environ., 203 (2017) 372–380.
  3. N. NHMRC, Australian drinking water guidelines paper 6 national water quality management strategy. National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra, 2011.
  4. J.A. Camargo, Á. Alonso, Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment, Environ. Int., 32(6) (2006) 831–849.
  5. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.-J. Choi, Controlled growth of ZnO nanowires and their optical properties, Adv. Funct. Mater., 12(5) (2002) 323.
  6. M. Ahmad, J. Zhu, ZnO based advanced functional nanostructures: synthesis, properties and applications, J. Mater. Chem., 21(3) (2011) 599–614.
  7. O. Akhavan, Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol, Carbon, 49(1) (2011) 11–18.
  8. O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad, Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria, J. Physics D: Appl. Phys., 42(22) (2009) 225305.
  9. F. Liu, Y.H. Leung, A.B. Djurišic,́ A.M.C. Ng, W.K. Chan, K.L. Ng, K.S. Wong, C. Liao, K. Shih, C. Surya, Effect of plasma treatment on native defects and photocatalytic activities of zinc oxide tetrapods, J. Phys. Chem. C, 118(39) (2014) 22760–22767.
  10. J. Xiao, T. Frauenheim, T. Heine, A. Kuc, Temperature-mediated magnetism in Fe-doped ZnO semiconductors, J. Phys. Chem. C, 117(10) (2013) 5338–5342.
  11. Z. Chen, N. Zhang, Y.-J. Xu, Synthesis of graphene–ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion, Cryst. Eng. Comm., 15(15) (2013) 3022–3030.
  12. K. Kumar, M. Chitkara, I.S. Sandhu, D. Mehta, S. Kumar, Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route, J. Alloys Comp., 588 (2014) 681–689.
  13. X.-C. Liu, E.-W. Shi, Z.-Z. Chen, H.-W. Zhang, L.-X. Song, H. Wang, S.-D. Yao, Structural, optical and magnetic properties of Co-doped ZnO films, J. Crystal Growth, 296(2) (2006) 135–140.
  14. Z. Wu, K. Cheng, F. Zhang, R. Guan, X. Wu, L. Zhuge, Effect of Al co-doping on the electrical and magnetic properties of Cu-doped ZnO nanorods, J. Alloys Comp., 615 (2014) 521–525.
  15. W.-H. Kim, J.Y. Son, Room temperature magneto resistance of horizontally aligned Mn-doped ZnO nanowires on terrace edges, Mater. Lett., 133 (2014) 101–104.
  16. J. Park, G. Park, H.-J. Ko, J.-S. Ha, The effect of ITO/Mo/MoO3 anode multilayer film on efficient hole extraction in MEH–PPV/ZnO NP hybrid solar cells, Ceramics Int., 40(10) (2014) 16281–16285.
  17. K. Shinde, R. Pawar, B. Sinha, H. Kim, S. Oh, K. Chung, Optical and magnetic properties of Ni doped ZnO planetary ball milled nanopowder synthesized by co-precipitation, Ceramics Int., 40(10) (2014) 16799–16804. [
  18. O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts, ACS Nano, 4(7) (2010) 4174–4180.
  19. B. Li, T. Liu, Y. Wang, Z. Wang, ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance, J. Colloid Interface Sci., 377(1) (2012) 114–121.
  20. J. Wang, T. Tsuzuki, B. Tang, X. Hou, L. Sun, X. Wang, Reduced graphene oxide/ZnO composite: reusable adsorbent for pollutant management, ACS Appl. Mater. Interfaces, 4(6) (2012) 3084–3090.
  21. C. Wen, F. Liao, S. Liu, Y. Zhao, Z. Kang, X. Zhang, M. Shao, Bi-functional ZnO–RGO–Au substrate: photocatalysts for degrading pollutants and SERS substrates for real-time monitoring, Chem. Commun., 49(29) (2013) 3049–3051.
  22. K.I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun., 146(9) (2008) 351–355.
  23. D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry, Chem. Soc. Rev., 39(8) (2010) 3157–3180.
  24. D. Li, R.B. Kaner, Graphene-based materials, Nat. Nanotechnol., 3 (2008) 101.
  25. M.-Q. Yang, N. Zhang, M. Pagliaro, Y.-J. Xu, Artificial photosynthesis over graphene–semiconductor composites. Are we getting better? Chem. Soc. Rev., 43(24) (2014) 8240–8254.
  26. T. Xu, L. Zhang, H. Cheng, Y. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study, Appl. Catal. B: Environ., 101(3) (2011) 382–387.
  27. J. Zhai, L. Sun, H. Yu, H. Li, X. Zhang, H. Yang, J. Xu, A facile approach of fabricating graphene-encapsulated ZnO microspheres and their synergic effect on photocatalytic performance, J. Nanopart. Res., 16(6) (2014) 2433.
  28. T. Li, Y. He, H. Lin, J. Cai, L. Dong, X. Wang, M. Luo, L. Zhao, X. Yi, W. Weng, Synthesis, characterization and photocatalytic activity of visible-light plasmonic photocatalyst AgBr-SmVO4. Appl. Catal. B: Environ., 138 (2013) 95–103.
  29. D. Wang, Y. Duan, Q. Luo, X. Li, L. Bao, Visible light photocatalytic activities of plasmonic Ag/AgBr particles synthesized by a double jet method, Desalination, 270 (2011) 174–180.
  30. C. An, W. Jiang, J. Wang, S. Wang, Z. Ma, Y. Li, Synthesis of three-dimensional AgI@TiO2 nanoparticles with improved photocatalytic performance, Dalton Trans., 42(24) (2013) 8796–8801.
  31. K. Dai, J. Lv, L. Lu, Q. Liu, G. Zhu, D. Li, Synthesis of micronano heterostructure AgBr/ZnO composite for advanced visible light photocatalysis, Mater. Lett., 130 (2014) 5–8.
  32. B. Krishnakumar, B. Subash, M. Swaminathan, AgBr–ZnO–An efficient nano-photocatalyst for the mineralization of Acid Black 1 with UV light, Separ. Purif. Technol., 85 (2012) 35–44.
  33. L. Shi, L. Liang, J. Ma, J. Sun, Improved photocatalytic performance over AgBr/ZnO under visible light, Superlatt. Microstruct., 62 (2013) 128–139.
  34. C. Wu, L. Shen, Y.C. Zhang, Q. Huang, Synthesis of AgBr/ZnO nanocomposite with visible light-driven photocatalytic activity, Mater. Lett., 66(1) (2012) 83–85.
  35. Y. Xing, R. Li, Q. Li, J. Yang, A new method of preparation of AgBr/TiO2 composites and investigation of their photocatalytic activity, J. Nanopart. Res., 14(12) (2012) 1284.
  36. J. Yi, L. Huang, H. Wang, H. Yu, F. Peng, AgI/TiO2 nanobelts monolithic catalyst with enhanced visible light photocatalytic activity, J. Hazard. Mater., 284 (2015) 207–214.
  37. Y. Zang, R. Farnood, Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation, Applied Catal. B: Environ., 79(4) (2008) 334–340.
  38. J. Lu, H. Wang, Y. Dong, F. Wang, S. Dong, Plasmonic AgX nanoparticles-modified ZnO nanorod arrays and their visible-light-driven photocatalytic activity, Chinese J. Catal., 35(7) (2014) 1113–1125.
  39. K. Vignesh, A. Suganthi, M. Rajarajan, S. Sara, Photocatalytic activity of AgI sensitized ZnO nanoparticles under visible light irradiation, Powder Technol., 224 (2012) 331–337.
  40. R. Hong, L. Ding, C. Tao, D. Zhang, In situ synthesis of graphene/zinc oxide composite by thermal decomposition of zinc acetate, Int. J. Nanotechnol., 12(10–12) (2015) 811–817.
  41. S. Parastar, S. Nasseri, S.H. Borji, M. Fazlzadeh, A.H. Mahvi, A.H. Javadi, M. Gholami, Application of Ag-doped TiO2 nanoparticle prepared by photodeposition method for nitrate photocatalytic removal from aqueous solutions, Desal. Water Treat., 51(37–39) (2013) 7137–7144.
  42. F. Hosseini, A. Kasaeian, F. Pourfayaz, M. Sheikhpour, D. Wen, Novel ZnO-Ag/MWCNT nanocomposite for the photocatalytic degradation of phenol, Mater. Sci. Semicond. Process., 83 (2018) 175–185.
  43. S. Shaker-Agjekandy, A. Habibi-Yangjeh, Ultrasonic-assisted preparation of novel ternary ZnO/AgI/Ag2CrO4 nanocomposites as visible-light-driven photocatalysts with excellent activity, Mater. Sci. Semicond. Process., 44 (2016) 48–56.
  44. S.R. Morrison, Electrochemistry at semiconductor and oxidized metal electrodes. 1980.
  45. H. Huang, N. Huang, Z. Wang, G. Xia, M. Chen, L. He, Z. Tong, C. Ren, Room-temperature synthesis of carnation-like ZnO@ AgI hierarchical nanostructures assembled by AgI nanoparticles-decorated ZnO nanosheets with enhanced visible light photocatalytic activity, J. Colloid Interface Sci., 502 (2017) 77–88.
  46. Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev., 41(2) (2012) 782–796.
  47. M. Sancho, S. Álvarez-Blanco, G. Kombo, B. García-Fayos, Experimental determination of nanofiltration models: application to nitrate removal, Desal. Water Treat., 57(48–49) (2016) 22852–22859.
  48. R. Rezaee, S. Nasseri, A.H. Mahvi, R. Nabizadeh, S.A. Mousavi, A. Maleki, M. Alimohammadi, A. Jafari, S. Hemmati Borji, Development of a novel graphene oxide-blended polysulfone mixed matrix membrane with improved hydrophilicity and evaluation of nitrate removal from aqueous solutions, Chem. Eng. Commun., 206(4) (2019) 495–508.