References
- M. Erdem, Chromium recovery from chrome shaving generated
in tanning process, J. Hazard. Mater., 129 (2006) 143–146.
- G. Zheng, L. Zhou, S. Wang, An acid-tolerant heterotrophic
microorganism role in improving tannery sludge bioleaching
conducted in successive multi-batch reaction systems, Environ.
Sci. Technol., 43 (2009) 4151–4156.
- A. Esmaeili, A.M. Nia, R. Vazirinejad, Chromium (III) removal
and recovery from tannery wastewater by precipitation process,
Amer. J. Appl. Sci., 2 (2005) 1471–1473.
- J. Wang, S. Zhu, Y. Zhang, H. Zhao, M. Hu, C. Yang, W. Qin,
G. Qiu, Bioleaching of low-grade copper sulfide ores by Acidithiobacillus
ferrooxidans and Acidithiobacillus thiooxidans, J. Cent
South Univ., 21 (2014) 728–734.
- C. Elicker, P.J.S. Filho, K.R.L. Castagno, Electro remediation of
heavy metals in sewage sludge, Braz. J. Chem. Eng., 31 (2014)
365–371.
- S. Ding, L. Dong, D. Pan, Chrome Adsorption characteristics
of yue village soil fertilized with tannery sludge, J. Soc. Leath.
Tech. Ch., 98 (2014) 163–166.
- J. Allue, A.M. Garces, J. Bech, J. Barcelo, C. Poschenrieder, Fractionation
of chromium in tannery sludge-amended soil and
its availability to fenugreek plants, J. Soil. Sediment., 14 (2014)
697–702.
- L. Alibardi, R. Cossu, Pre-treatment of tannery sludge for sustainable
landfilling, Waste Manage., 52 (2016) 202–211.
- P. Kavouras, E. Pantazopoulou, S. Varitis, G. Vourlias, K. Chrissafis,
G.P. Dimitrakopulos, M. Mitrakas, A.I. Zouboulis, T.
Karakostas, A. Xenidis, Incineration of tannery sludge under
oxic and anoxic conditions: Study of chromium speciation, J.
Hazard. Mater., 283 (2015) 672–679.
- F.P. Camargo, P.S. Tonello, A.C.A. Dos Santos, I.C. Silveira
Duarte, Removal of toxic metals from sewage sludge through
chemical, physical, and biological treatments-a review, Water
Air Soil Poll., 227 (2016).
- W. Zhang, L. Yang, A. Wang, C. Wang, J. Zhou, Advance of
sludge producing, hazards and disposal methods, Adv. Mater.
Res., 1033–1034 (2014) 369–377.
- S.O. Rastegar, S.M. Mousavi, S.A. Shojaosadati, Cr and Ni
recovery during bioleaching of dewatered metal-plating
sludge using Acidithiobacillus ferrooxidans, Bioresour. Technol.,
167 (2014) 61–68.
- J. Zeng, M. Gou, Y. Tang, G. Li, Z. Sun, K. Kida, Effective
bioleaching of chromium in tannery sludge with an enriched
sulfur-oxidizing bacterial community, Bioresour. Technol., 218
(2016) 859–866.
- M.L.M. Rodrigues, K.C.S. Lopes, H.C. Leoncio, L.A.M. Silva,
V.A. Leao, Bioleaching of fluoride-bearing secondary copper
sulphides: Column experiments with Acidithiobacillus ferrooxidans,
Chem. Eng. J., 284 (2016) 1279–1286.
- W. Gu, J. Bai, B. Dong, X. Zhuang, J. Zhao, C. Zhang, J. Wang,
K. Shih, Catalytic effect of graphene in bioleaching copper
from waste printed circuit boards by Acidithiobacillus ferrooxidans,
Hydrometallurgy, 171 (2017) 172–178.
- H. Ma, J. Zhou, L. Hua, F. Cheng, L. Zhou, X. Qiao, Chromium
recovery from tannery sludge by bioleaching and its reuse in
tanning process, J. Clean. Prod., 142 (2017) 2752–2760.
- S.V. Prabhu, R. Baskar, Detoxification of electroplating sludge
by bioleaching: process and kinetic aspects, Pol. J. Environ.
Stud., 24 (2015) 1249–1257.
- L. Li, J. Gao, S. Zhu, Y. Li, R. Zhang, Study of bioleaching under
different hydraulic retention time for enhancing the dewaterability
of digestate, Appl. Microbiol. Biot., 99 (2015) 10735–10743.
- G. Zheng, M. Huo, L. Zhou, Extracellular Polymeric substances
level determines the sludge dewaterability in bioleaching process,
J. Environ. Eng., 142 (2016).
- J. Zhu, J. Zhang, Q. Li, T. Han, Y. Hu, X. Liu, W. Qin, L. Chai, G.
Qiu, Bioleaching of heavy metals from contaminated alkaline
sediment by auto- and heterotrophic bacteria in stirred tank
reactor, T. Nonferr. Metal. Soc., 24 (2014) 2969–2975.
- G. Akinci, D.E. Guven, Bioleaching of heavy metals contaminated
sediment by pure and mixed cultures of Acidithiobacillus spp., Desalination, 268 (2011) 221–226.
- A. Pathak, M.G. Dastidar, T.R. Sreekrishnan, Bioleaching of
heavy metals from sewage sludge: A review, J. Environ. Manage.,
90 (2009) 2343–2353.
- H. Hong, C. Su, U.U. Jadhav, Bioleaching of metals from steel
slag by Acidithiobacillus thiooxidans culture supernatant, Chemosphere,
117 (2014) 652–657.
- H. Yang, S. Feng, Y. Xin, W. Wang, Community dynamics of
attached and free cells and the effects of attached cells on chalcopyrite
bioleaching by Acidithiobacillus sp., Bioresour. Technol.,
154 (2014) 185–191.
- D. Fang, L. Zhou, Enhanced Cr bioleaching efficiency from
tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor, Chemosphere,
69 (2007) 303–310.
- W. Hu, G. Zheng, D. Fang, C. Cui, J. Liang, L. Zhou, Bioleached
sludge composting drastically reducing ammonia volatilization
as well as decreasing bulking agent dosage and improving
compost quality: A case study, Waste Manage., 44 (2015)
55–62.
- A. Pathak, M.G. Dastidar, T.R. Sreekrishnan, Bioleaching of
heavy metals from sewage sludge by indigenous iron-oxidizing
microorganisms using ammonium ferrous sulfate and ferrous
sulfate as energy sources: A comparative study, J. Hazard.
Mater., 171 (2009) 273–278.
- F. Liu, L. Zhou, J. Zhou, X. Song, D. Wang, Improvement of
sludge dewaterability and removal of sludge-borne metals by
bioleaching at optimum pH, J. Hazard. Mater., 221 (2012) 170–177.
- Y. Wen, Q. Wang, C. Tang, Z. Chen, Bioleaching of heavy metals
from sewage sludge by Acidithiobacillus thiooxidans - a comparative
study, J. Soil. Sediment., 12 (2012) 900–908.
- Y. Wen, Y. Cheng, C. Tang, Z. Chen, Bioleaching of heavy
metals from sewage sludge using indigenous iron-oxidizing
microorganisms, J. Soil. Sediment., 13 (2013) 166–175.
- S. Chen, J. Lin, Enhancement of metal bioleaching from contaminated
sediment using silver ion, J. Hazard. Mater., 161
(2009) 893–899.
- G. Zheng, L. Zhou, Supplementation of inorganic phosphate
enhancing the removal efficiency of tannery sludge-borne Cr
through bioleaching, Water Res., 45 (2011) 5295–5301.
- M. Gan, Z. Song, J. Zhu, X. Liu, Efficient bioleaching of heavy
metals from contaminated sediment in batch method coupled
with the assistance of heterotrophic microorganisms, Environ.
Earth Sci., 75 (2016).
- H. Li, M. Ye, Z. Li, Optimization of kinetics and operating
parameters for the bioleaching of heavy metals from sewage
sludge, using co-inoculation of two Acidithiobacillus species,
Water Sci. Technol., 2 (2018) 390–403.
- APHA, Standard Methods for the Examination of Water and
Wastewater, American Public Health Association, Washington,
DC., 2005.
- S. Wang, G. Zheng, L. Zhou, Heterotrophic microorganism
Rhodotorula mucilaginosa R30 improves tannery sludge
bioleaching through elevating dissolved CO2 and extracellular
polymeric substances levels in bioleach solution as well as
scavenging toxic DOM to Acidithiobacillus species, Water Res.,
44 (2010) 5423–5431.
- Y. Liao, L. Zhou, J. Liang, H. Xiong, Biosynthesis of schwertmannite
by Acidithiobacillus ferrooxidans cell suspensions under
different pH condition, Mater. Sci. Eng. C - Biomim. Supramol.
Syst., 29 (2009) 211–215.
- L.X. Zhou, D. Fang, S.M. Wang, J. Wong, D.Z. Wang, Bioleaching
of Cr from tannery sludge: The effects of initial acid addition
and recycling of acidified bioleached sludge, Environ.
Technol., 26 (2005) 277–284.
- Y. Wang, W. Li, A. Irini, C. Su, Removal of organic pollutants
in tannery wastewater from wet-blue fur processing by integrated
anoxic/oxic (A/O) and Fenton: Process optimization,
Chem. Eng. J., 252 (2014) 22–29.
- P. Zhang, Y. Zhu, G. Zhang, S. Zou, G. Zeng, Z. Wu, Sewage
sludge bioleaching by indigenous sulfur-oxidizing bacteria:
Effects of ratio of substrate dosage to solid content, Bioresour.
Technol., 100 (2009) 1394–1398.
- L.J.C. Chuan M C, Release behavior of chromium from tannery
sludge, Water Res., 30 (1996) 932–938.
- L.C. Chan, X.Y. Gu, J. Wong, Comparison of bioleaching of
heavy metals from sewage sludge using iron- and sulfur-oxidizing
bacteria, Adv. Environ. Res., 7 (2003) 603–607.
- H.W. Ryu, H.S. Moon, E.Y. Lee, K.S. Cho, H. Choi, Leaching
characteristics of heavy metals from sewage sludge by Acidithiobacillus
thiooxidans MET, J. Environ. Qual., 32 (2003) 751–759.
- J. Wong, L. Xiang, L.C. Chan, PH requirement for the bioleaching
of heavy metals from anaerobically digested wastewater
sludge, Water Air Soil Poll., 138 (2002) 25–35.
- H. Xiong, Y. Liao, L. Zhou, Influence of chloride and sulfate on
formation of akaganeite and schwertmannite through ferrous
biooxidation by Acidithiobacillus ferrooxidans cells, Environ.
Sci. Technol., 42 (2008) 8681–8686.
- L. Ma, X. Wang, J. Tao, X. Feng, K. Zou, Y. Xiao, Y. Liang, H.
Yin, X. Liu, Bioleaching of the mixed oxide-sulfide copper ore
by artificial indigenous and exogenous microbial community,
Hydrometallurgy, 169 (2017) 41–46.
- B. Ebbers, L.M. Ottosen, P.E. Jensen, Electro dialytic treatment of
municipal wastewater and sludge for the removal of heavy metals
and recovery of phosphorus, Electrochim. Acta, 181 (2015) 90–99.
- Y. Wang, Z. Pan, J. Lang, J. Xu, Y. Zheng, Bioleaching of chromium
from tannery sludge by indigenous Acidithiobacillus thiooxidans,
J. Hazard. Mater., 147 (2007) 319–324.
- Q. Zhou, J. Gao, Y. Li, S. Zhu, L. He, W. Nie, R. Zhang, Bioleaching
in batch tests for improving sludge dewaterability and
metal removal using Acidithiobacillus ferrooxidans and Acidithiobacillus
thiooxidans after cold acclimation, Water Sci. Technol.,
76 (2017) 1347–1359.