References

  1. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  2. M. Boskabady, N. Marefati, T. Farkhondeh, F. Shakeri, A. Farshbaf, M.H. Boskabady, The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review, Environ. Int., 120 (2018) 404–420.
  3. H. Bradl, Heavy metals in the environment: origin, interaction and remediation, Elsevier, London UK, 2005.
  4. J.S. Casas, J. Sordo, Lead: chemistry, analytical aspects, environmental impact and health effects, Elsevier, London UK, 2011.
  5. R.C. Gupta, Reproductive and developmental toxicology, Elsevier, London UK, 2011.
  6. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem., 4 (2011) 361–377.
  7. N. Ozbay, A.S. Yargic, Comparison of surface and structural properties of carbonaceous materials prepared by chemical activation of tomato paste waste: the effects of activator type and impregnation ratio, J. Appl. Chem., 2016 (2016) 1–10.
  8. S. Kumar, R. Sivaranjanee, A. Saravanan, Carbon sphere: Synthesis, characterization and elimination of toxic Cr(VI) ions from aquatic system, J. Ind. Eng. Chem., 60 (2018) 307–320.
  9. H. Tounsadi, A. Khalidi, M. Abdennouri, N. Barka, Activated carbon from Diplotaxis Harra biomass: Optimization of preparation conditions and heavy metal removal, J. Taiwan Inst. Chem. Eng., 59 (2016) 348–358.
  10. S. Das, S. Mishra, Box-Behnken statistical design to optimize preparation of activated carbon from Limonia acidissima shell with desirability approach, J. Environ. Chem. Eng., 5 (2017) 588–600.
  11. S. Pap, J. Radonić, S. Trifunović, D. Adamović, I. Mihajlović, M. Vojinović Miloradov, M. Turk Sekulić, Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb2+, Cd2+ and Ni2+ from aqueous wastes, J. Environ. Manage., 184 (2016) 297–306.
  12. G.A. Adebisi, Z.Z. Chowdhury, P.A. Alaba, Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent, J. Clean. Prod., 148 (2017) 958–968.
  13. S.Z. Mohammadi, M.A. Karimi, S.N. Yazdy, T. Shamspur, H. Hamidian, Removal of Pb(II) ions and malachite green dye from wastewater by activated carbon produced from lemon peel, Quim. Nova., 37 (2014) 804–809.
  14. J.N. Sahu, J. Acharya, B.K. Sahoo, B.C. Meikap, Optimization of lead (II) sorption potential using developed activated carbon from tamarind wood with chemical activation by zinc chloride, Desal. Water Treat., 57 (2016) 2006–2017.
  15. M. Manjuladevi, R. Anitha, S. Manonmani, Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel, Appl. Water Sci., 8 (2018) 36.
  16. M. Chandrasekaran, A.H. Bahkali, Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology – Review, Saudi J. Biol. Sci., 20 (2013) 105–120.
  17. Food and Agriculture Organization, FAOSTAT. Production; Crops, FAO. (2017). http://www.fao.org/faostat/en/#data/QC (accessed August 25, 2018).
  18. S. Ghnimi, S. Umer, A. Karim, A. Kamal-Eldin, Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization, NFS J., 6 (2017) 1–10.
  19. S. Norouzi, M. Heidari, V. Alipour, O. Rahmanian, M. Fazlzadeh, F. Mohammadi-moghadam, H. Nourmoradi, B. Goudarzi, K. Dindarloo, Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from date press cake; an agro-industrial waste, Bioresour. Technol., 258 (2018) 48–56.
  20. Y.B. Onundi, A.A. Mamun, M.F. Al Khatib, Y.M. Ahmed, Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon, Int. J. Environ. Sci. Technol., 7 (2010) 751–758.
  21. J.R. García, U. Sedran, M.A.A. Zaini, Z.A. Zakaria, Preparation, characterization, and dye removal study of activated carbon prepared from palm kernel shell, Environ. Sci. Pollut. Res., 25 (2018) 5076–5085.
  22. E.-S.I. El-Shafey, H. Al-Lawati, A.S. Al-Sumri, Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets, J. Environ. Sci., 24 (2012) 1579–1586.
  23. E.-S.I. El-Shafey, S. Al-Busafi, H.A.J. Al-Lawati, A.S. Al-Shibli, Removal of Cu2+ and SO42- from aqueous solutions on surface functionalized dehydrated carbon from date palm leaflets, J. Water Process Eng., 15 (2017) 62–71.
  24. K.Y. Foo, B.H. Hameed, Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption, Chem. Eng. J., 166 (2011) 792–795.
  25. G.O. El-Sayed, Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber, Desalination, 272 (2011) 225–232.
  26. Z. Heidarinejad, O. Rahmanian, M. Fazlzadeh, M. Heidari, Enhancement of methylene blue adsorption onto activated carbon prepared from date press cake by low frequency ultrasound, J. Mol. Liq., 264 (2018) 591–599.
  27. W.M. Daud, W.S. Ali, M.Z. Sulaiman, The effects of carbonization temperature on pore development in palm-shell-based activated carbon, Carbon, 38 (2000) 1925–1932.
  28. O. Pezoti, A.L. Cazetta, K.C. Bedin, L.S. Souza, A.C. Martins, T.L. Silva, O.O. Santos Júnior, J.V. Visentainer, V.C. Almeida, NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies, Chem. Eng. J., 288 (2016) 778–788.
  29. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  30. C. Miranda, J. Urresta, H. Cruchade, A. Tran, M. Benghalem, A. Astafan, P. Gaudin, T.J. Daou, A. Ramírez, Y. Pouilloux, A. Sachse, Exploring the impact of zeolite porous voids in liquid phase reactions: The case of glycerol etherification by tert-butyl alcohol, J. Catal., 365 (2018) 249–260.
  31. A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes, V.C. Almeida, NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption, Chem. Eng. J., 174 (2011) 117–125.
  32. S.L. Goertzen, K.D. Thériault, A.M. Oickle, A.C. Tarasuk, H.A. Andreas, Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination, Carbon N. Y., 48 (2010) 1252–1261.
  33. H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 32 (1994) 759–769.
  34. W.-J. Liu, F.-X. Zeng, H. Jiang, X.-S. Zhang, Preparation of high adsorption capacity bio-chars from waste biomass, Bioresour. Technol., 102 (2011) 8247–8252.
  35. R.-L. Tseng, S.-K. Tseng, Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob, J. Colloid Interface Sci., 287 (2005) 428–437.
  36. A.N. El-Hendawy, An insight into the KOH activation mechanism through the production of microporous activated carbon for the removal of Pb2+ cations, Appl. Surf. Sci., 255 (2009) 3723–3730.
  37. L. Muniandy, F. Adam, A.R. Mohamed, E.P. Ng, The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH, Micropor. Mesopor. Mater., 197 (2014) 316–323.
  38. Q. Wang, X. Liang, W. Qiao, C. Liu, X. Liu, L. Zhan, L. Ling, Preparation of polystyrene-based activated carbon spheres with high surface area and their adsorption to dibenzothiophene, Fuel Process. Technol., 90 (2009) 381–387.
  39. A. Nieto-Márquez, A. Pinedo-Flores, G. Picasso, E. Atanes, R. Sun Kou, Selective adsorption of Pb2+, Cr3+ and Cd2+ mixtures on activated carbons prepared from waste tires, J. Environ. Chem. Eng., 5 (2017) 1060–1067.
  40. T.L. Silva, A.L. Cazetta, P.S.C. Souza, T. Zhang, T. Asefa, V.C. Almeida, Mesoporous activated carbon fibers synthesized from denim fabric waste: Efficient adsorbents for removal of textile dye from aqueous solutions, J. Clean. Prod., 171 (2018) 482–490.
  41. S. Li, K. Han, J. Li, M. Li, C. Lu, Preparation and characterization of super activated carbon produced from gulfweed by KOH activation, Micropor. Mesopor. Mat., 243 (2017) 291–300.
  42. R. Khosravi, A. Zarei, M. Heidari, A. Ahmadfazeli, M. Vosughi, M. Fazlzadeh, Application of ZnO and TiO2 nanoparticles coated onto montmorillonite in the presence of H2O2 for efficient removal of cephalexin from aqueous solutions, Korean J. Chem. Eng., (2018) 1000–1008.
  43. W.-H. Li, Q.-Y. Yue, B.-Y. Gao, Z.-H. Ma, Y.-J. Li, H.-X. Zhao, Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions, Chem. Eng. J., 171 (2011) 320–327.
  44. A. Kumar, H.M. Jena, Adsorption of Cr(VI) from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4, J. Environ. Chem. Eng., 5 (2017) 2032–2041.
  45. R. Ahmad, S. Haseeb, Absorptive removal of Pb2+, Cu2+ and Ni2+ from the aqueous solution by using groundnut husk modified with Guar Gum (GG): Kinetic and thermodynamic studies, Groundw. Sustain. Dev., 1 (2015) 41–49.
  46. T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Comparison of activated carbon prepared from olive stones by microwave and conventional heating for iron (II), lead (II), and copper (II) removal from synthetic wastewater, Environ. Prog. Sustain. Energy, 33 (2014) 1074–1085.
  47. A.M. Soliman, H.M. Elwy, T. Thiemann, Y. Majedi, F.T. Labata, N.A.F. Al-Rawashdeh, Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated palm tree leaves, J. Taiwan Inst. Chem. Eng., 58 (2016) 264–273.
  48. H. Liu, F. Li, L. Chen, J. Ding, M. Sun, H. Liu, F. Li, L. Chen, J. Ding, M. Sun, Adsorptive removal of Pb(II) ions with magnetic metal-organic frameworks from aqueous samples, Gen. Chem., 3 (2017) 134–139.
  49. L. Bo, Q. Li, Y. Wang, L. Gao, X. Hu, J. Yang, One-pot hydrothermal synthesis of thrust spherical Mg–Al layered double hydroxides/MnO2 and adsorption for Pb(II) from aqueous solutions, J. Environ. Chem. Eng., 3 (2015) 1468–1475.
  50. M.H. Dehghani, A. Dehghan, A. Najafpoor, Removing Reactive Red 120 and 196 using chitosan/zeolite composite from aqueous solutions: Kinetics, isotherms, and process optimization, J. Ind. Eng. Chem., 51 (2017) 185–195.
  51. S. Lagergren, ‘Zurtheorie der sogenannten adsorption gelosterstoffe’, Kungliga svenskavetenskapsakademiens, Handlingar Band, 24 (1898) 1–39.
  52. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  53. S.Y. Elovich, O.G. Larinov, Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form,(II) verification of the equation of adsorption isotherm from solutions, Izv. Akad. Nauk. SSSR, Otd. Khim. Nauk., 2 (1962) 209–216.
  54. S. Vilvanathan, S. Shanthakumar, Biosorption of Co(II) ions from aqueous solution using Chrysanthemum indicum: Kinetics, equilibrium and thermodynamics, Process Saf. Environ. Prot., 96 (2015) 98–110.
  55. Y. Yang, X. Yan, X. Hu, R. Feng, M. Zhou, W. Cui, Development of zeolitic imidazolate framework-67 functionalized Co-Al LDH for CO2 adsorption, Colloids Surfaces A Physicochem, Eng. Asp., 552 (2018) 16–23.
  56. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  57. G.F. Malash, M.I. El-Khaiary, Piecewise linear regression: A statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models, Chem. Eng. J., 163 (2010) 256–263.
  58. G.E. Boyd, A.W. Adamson, L.S. Myers Jr, The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics, J. Am. Chem. Soc., 69 (1947) 2836–2848.
  59. S. Wong, Y. Lee, N. Ngadi, I.M. Inuwa, N.B. Mohamed, Synthesis of activated carbon from spent tea leaves for aspirin removal, Chinese J. Chem. Eng., 26 (2018) 1003–1011.
  60. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–471.
  61. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  62. O.J. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024–1026.
  63. M.I. Temkin, Kinetics of ammonia synthesis on promoted iron catalysts, Acta physiochim. URSS., 12 (1940) 327–356.
  64. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  65. S.Z. Mohammadi, M.A. Karimi, D. Afzali, F. Mansouri, Removal of Pb(II) from aqueous solutions using activated carbon from sea-buckthorn stones by chemical activation, Desalination, 262 (2010) 86–93.
  66. E.G. Lemraski, S. Sharafinia, Kinetics, equilibrium and thermodynamics studies of Pb2+ adsorption onto new activated carbon prepared from Persian mesquite grain, J. Mol. Liq., 219 (2016) 482–492.
  67. T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Application of response surface methodology (RSM) for optimization of Cu2+, Cd2+, Ni2+, Pb2+, Fe2++, and Zn2+ removal from aqueous solution using microwaved olive stone activated carbon, J. Chem. Technol. Biotechnol., 88 (2013) 2141–2151.
  68. J. Sun, Z. Zhang, J. Ji, M. Dou, F. Wang, Removal of Cr6+ from wastewater via adsorption with high-specific-surface-area nitrogen-doped hierarchical porous carbon derived from silkworm cocoon, Appl. Surf. Sci., 405 (2017) 372–379.
  69. F. Boudrahem, F. Aissani-Benissad, H. Aït-Amar, Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride, J. Environ. Manage., 90 (2009) 3031–3039.
  70. M. Abdulkarim, F.A. Al-Rub, Adsorption of lead ions from aqueous solution onto activated carbon and chemically-modified activated carbon prepared from date pits, Adsorpt. Sci. Technol., 22 (2004) 119–134.
  71. Q. Fan, D. Shao, Y. Lu, W. Wu, X. Wang, Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(II) to Na–attapulgite, Chem. Eng. J., 150 (2009) 188–195.
  72. S. Goldberg, Inconsistency in the triple layer model description of ionic strength dependent boron adsorption, J. Colloid Interface Sci., 285 (2005) 509–517.
  73. Z. Liu, X. Zhong, Y. Wang, Z. Ding, C. Wang, G. Wang, S. Liao, An efficient adsorption of manganese oxides/activated carbon composite for lead(II) ions from aqueous solution, Arab. J. Sci. Eng., 43 (2018) 2155–2165.