References
- V.K. Nguyen, Y. Ahn, Electrochemical removal and recovery
of iron from groundwater using non-corrosive electrodes, J.
Environ. Manage., 211 (2018) 36–41.
- K. Vaaramaa, J. Lehto, Removal of metals and anions from drinking
water by ion exchange, Desalination, 155 (2003) 157–170.
- W.C. Andersen, T.J. Bruno, Application of a gas–liquid entraining
rotor to supercritical fluid extraction: Removal of iron(III)
from water, Anal. Chim. Acta, 485 (2003) 1–8.
- H.A. Aziz, M.S. Yusoff, M.N. Adlan, N.H. Adnan, S. Alias, Physico-chemical removal of iron from semi-aerobic landfill leachate
by limestone filter, Waste Manage., 24 (2004) 353–358.
- D. Ellis, C. Bouchard, G. Lantagne, Removal of iron and manganese
from groundwater by oxidation and micro filtration,
Desalination, 130 (2000) 255–264.
- B.Y. Cho, Iron removal using an aerated granular filter, Process
Biochem., 40 (2005) 3314–3320.
- S. Tahir, N. Rauf, Removal of Fe (II) from the wastewater of a
galvanized pipe manufacturing industry by adsorption onto
bentonite clay, J. Environ. Manage., 73 (2004) 285–292.
- B. Das, P. Hazarika, G. Saikia, H. Kalita, D.C. Goswami, H.B.
Das, S.N. Dube, R.K. Dutta, Removal of iron from groundwater
by ash: A systematic study of a traditional method, J. Hazard.
Mater., 141 (2007) 834–834.
- C. Prochaska, A. Zouboulis, Removal of phosphates by pilot
vertical-flow constructed wetlands using a mixture of sand
and dolomite as substrate, Ecol. Eng., 26 (2006) 293–303.
- D. Zhao, A.K. Sengupta, Ultimate removal of phosphate from
wastewater using a new class of polymeric ion exchangers,
Water Res., 32 (1998) 1613–1625.
- P.E. Lamoreaux, B.A. Memon, H. Idris, Groundwater development,
Kharga Oases, Western Desert of Egypt: A long-term environmental
concern, Environ. Geol. Water Sci., 7 (1985) 129–149.
- A.M. Ebraheem, S. Riad, P. Wycisk, A.M.S. El Nasr, Simulation
of impact of present and future groundwater extraction from
the non-replenished Nubian Sandstone Aquifer in SW Egypt,
Environ. Geol., 43 (2002) 188–196.
- W.E. Mahmod, K. Watanabe, A.A. Zahr-Eldeen, Analysis of
groundwater flow in arid areas with limited hydrogeological
data using the Grey Model: a case study of the Nubian Sandstone,
Kharga Oasis, Egypt, Hydrogeol. J., 21 (2013) 1021–1034.
- W.E. Mahmod, K. Watanabe, Modified grey model and its
application to groundwater flow analysis with limited hydrogeological
data: a case study of the Nubian Sandstone, Kharga
Oasis, Egypt. Environ. Monit. Assess., 186 (2014) 1063–1081.
- M. Gad, K. Dahab, H. Ibrahim, Impact of iron concentration as
a result of groundwater exploitation on the Nubian sandstone
aquifer in El Kharga Oasis, western desert, Egypt, NRIAG-JAG
(2016) doi:10.1016/j.nrjag.2016.04.003.
- Environmental action Plan New Valley Governorate, State
Ministry of Environment - EEAA (2008).
- H.H. Sait, A. Hussain, A.A. Salema, F.N. Ani, Pyrolysis and
combustion kinetics of date palm biomass using thermogravimetric
analysis, Bioresour. Technol., 118 (2012) 382–389.
- D.Z. Husein, Adsorption and removal of mercury ions from
aqueous solution using raw and chemically modified Egyptian
mandarin peel, Desal. Water Treat., 51 (2013) 6761–6769.
- M. Ehsan, M.A. Barakat, D.Z. Husein, S.M. Ismail, Immobilization
of Ni and Cd in soil by biochar derived from unfertilized
dates, Water Air Soil Pollut., (2014) 2125–2123.
- H. Kehl, R. Bornkamm, Landscape ecology and vegetation
units of the western desert of Egypt. In B. Meissner, P. Wycisk
(Eds.) Geopotential ecology: analysis of a desert region. Catena
Suppl., 26 (1993) 155–178.
- APHA, AWWA, WPCF, Standard methods for the examination
of water and wastewater, 18th ed., American Public Health
Association, Washington, USA, 1992.
- D.Z. Husein, E. Aazam, M. Battia, Adsorption of cadmium(II)
onto watermelon rind under microwave radiation and application
into surface water from Jeddah, Saudi Arabia. Arab, J. Sci.
Eng., 42 (2017) 2403–2415.
- R.A. Nasser, An evaluation of the use of midribs from common
date palm cultivars grown in Saudi Arabia for energy production,
Bio. Resour., 9 (2014) 4343–4357.
- WHO: WHO Guidelines for drinking water quality. First
Addendum to 3rd ed., Geneva, 2006.
- V. Premlata, Multivariant analysis of drinking water quality
parameters of lake Pichhola in Udaipur. India, Biol. Forum Int
J., 1 (2009) 97–102.
- R. Udhayakumar, P. Manivannan, K. Raghu, S. Vaideki,
Assessment of physico-chemical characteristics of water in
Tamilnadu, Ecotoxicol. Environ. Saf., 134 (2016) 474–477.
- R. Han, L. Zou, X. Zhao, Y. Xu, F. Xu, Y. Li, Y. Wang, Characterization
and properties of iron oxide-coated zeolite as adsorbent
for removal of copper(II) from solution in fixed bed column,
Chem. Eng. J., 149 (2009) 123–131.
- E. Oguz, M. Ersoy, Removal of Cu2+ from aqueous solution by
adsorption in a fixed bed column and neural network modeling,
Chem. Eng. J., 164 (2010) 56–62.
- D.Z. Husein, T. Al-Radadi, E.Y. Danish, Adsorption of phosphate
using alginate-/zirconium-grafted newspaper pellets:
fixed-bed column study and application, Arab. J. Sci. Eng., 42
(2016) 1399–1412.
- S. Lagergern, About the theory of so-called adsorption of soluble
substances, K. Sven. Vetenskapsakad. Handl., 24 (1898)
1–39.
- G. Mckay, Y.S. Ho, Psuedo-second order model for sorption
processes, Process. Biochem., 34 (1999) 451–465.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from
solution, J. Sanit. Eng. Div. Proc. Am. Soc. Civil. Eng., 89 (1963)
31–59.
- W. Weber, J. Morris, Kinetics of adsorption on carbon from
solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- H.M.F. Freundlich, Uber die adsorption in Losungen [Over the
adsorption in solution], Z. Phys. Chem., 57 (1906) 385–470.
- M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on
promoted iron catalysts, Acta Physicochim., USSR, 12 (1940)
217–222.
- E.A. Da Silva, E.S. Cossich, C.R.G. Tavares, L.C. Filho, R. Guirardello,
Modeling of copper(II) biosorption by marine alga
Sargassum sp. in fixed-bed column, Process Biochem., 38
(2002) 791–799.
- C.A. Henriques, A.C.A. da Costa, M.M. dos Reis, A.L.H. Costa,
A.S. Luna, Batch and fixed-bed column biosorption of manganese
ion by Sargassum filipendula, Electron. J. Biotechnol., 14
(2011) 8–8.
- A. Shahbazi, H. Younesi, A. Badiei, Batch and fixed-bed column
adsorption of Cu(II), Pb(II) and Cd(II) from aqueous
solution onto functionalised SBA-15 mesoporous silica, Can. J.
Chem. Eng., 91 (2013) 739–750.
- M. Jang, W. Chen, F.S. Cannon, Preloading hydrous ferric
oxide into granular activated carbon for arsenic removal, Environ.
Sci. Technol., 42 (2008) 3369–3374.
- M. Şener, B. Kayan, S. Akay, B. Gözmen, D. Kalderis, Fe-modified
sporopollenin as a composite biosorbent for the removal of Pb2+
from aqueous solutions, Desal. Water Treat., 3994 (2016) 1–19.
- S.S. Mayakaduwa, P. Kumarathilaka, I. Herath, M. Ahmad, M.
Al-Wabel, Y.S. Ok, A. Usman, A. Abduljabbar, M. Vithanage,
Equilibrium and kinetic mechanisms of woody biochar on
aqueous glyphosate removal, Chemosphere, 144 (2016) 2516–
2521.
- M. Uchimiya, I.M. Lima, K.T. Klasson, S. Chang, L.H. Wartelle,
J.E. Rodgers, Immobilization of heavy metal ions (CuII, CdII,
NiII, and PbII) by broiler litter-derived biochars in water and
soil, J. Agric. Food Chem., 58 (2010) 5538–5544.
- P. Nautiyal, K.A. Subramanian, M.G. Dastidar, Adsorptive
removal of dye using biochar derived from residual algae after
in-situ transesterification: alternate use of waste of biodiesel
industry, J. Environ. Manage., 182 (2016) 187–197.
- S. Fan, J. Tang, Y. Wang, H. Li, H. Zhang, J. Tang, Z. Wang,
X. Li, Biochar prepared from co-pyrolysis of municipal sewage
sludge and tea waste for the adsorption of methylene blue
from aqueous solutions: kinetics, isotherm, thermodynamic
and mechanism, J. Mol. Liq., 220 (2016) 432–441.
- X. Cao, W. Harris, Properties of dairy-manure-derived biochar
pertinent to its potential use in remediation, Bioresour. Technol.,
101 (2010) 5222–5228.
- S. Fan, J. Tang, Y. Wang, H. Li, H. Zhang, J. Tang, Z. Wang,
X. Li, Biochar prepared from co-pyrolysis of municipal sewage
sludge and tea waste for the adsorption of methylene blue
from aqueous solutions: Kinetics, isotherm, thermodynamic
and mechanism, J. Mol. Liq., 220 (2016) 432–441.
- M. Keiluweit, M. Kleber, Molecular-level interactions in soils
and sediments: the role of aromatic p-systems, Environ. Sci.
Technol., 43 (2009) 3421–3429.
- M.L. Pierce, C.B. Moore, Adsorption of arsenite and arsenate
on amorphous iron hydroxide, Water Res., 16 (1982) 1247–1253.
- Q. Yang, X. Wang, W. Luo, J. Sun, Q. Xu, F. Chen, J. Zhao, S. Wang,
F. Yao, D. Wang, X. Li, G. Zeng, Effectiveness and mechanisms of
phosphate adsorption on iron-modified biochars derived from
waste activated sludge, Bioresour. Technol., 247 (2018) 537–544.
- J. Ren, N. Li, L. Li, J.K. An, L. Zhao, N.Q. Ren, Granulation
and ferric oxides loading enable biochar derived from cotton
stalk to remove phosphate from water, Bioresour. Technol., 178
(2015) 119–125.
- Z. Wang, D. Shen, F. Shen, T. Li, Phosphate adsorption on lanthanum
loaded biochar, Chemosphere, 150 (2016) 1–7.
- W. Ding, X. Dong, I.M. Ime, B. Gao, L.Q. Ma, Pyrolytic temperatures
impact lead sorption mechanisms by bagasse biochars,
Chemosphere, 62 (2014) 1912–1918.
- D.L. Sparks, Environmental soil chemistry. 2nd ed. Academic
Press, New York. 2003.
- S. Wan, S. Wang, Y. Li, B. Gao, Functionalizing biochar with
Mg-Al and Mg-Fe layered double hydroxides for removal
of phosphate from aqueous solutions, J. Ind. Eng. Chem., 47
(2017) 246–253.