References

  1. V.K. Nguyen, Y. Ahn, Electrochemical removal and recovery of iron from groundwater using non-corrosive electrodes, J. Environ. Manage., 211 (2018) 36–41.
  2. K. Vaaramaa, J. Lehto, Removal of metals and anions from drinking water by ion exchange, Desalination, 155 (2003) 157–170.
  3. W.C. Andersen, T.J. Bruno, Application of a gas–liquid entraining rotor to supercritical fluid extraction: Removal of iron(III) from water, Anal. Chim. Acta, 485 (2003) 1–8.
  4. H.A. Aziz, M.S. Yusoff, M.N. Adlan, N.H. Adnan, S. Alias, Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter, Waste Manage., 24 (2004) 353–358.
  5. D. Ellis, C. Bouchard, G. Lantagne, Removal of iron and manganese from groundwater by oxidation and micro filtration, Desalination, 130 (2000) 255–264.
  6. B.Y. Cho, Iron removal using an aerated granular filter, Process Biochem., 40 (2005) 3314–3320.
  7. S. Tahir, N. Rauf, Removal of Fe (II) from the wastewater of a galvanized pipe manufacturing industry by adsorption onto bentonite clay, J. Environ. Manage., 73 (2004) 285–292.
  8. B. Das, P. Hazarika, G. Saikia, H. Kalita, D.C. Goswami, H.B. Das, S.N. Dube, R.K. Dutta, Removal of iron from groundwater by ash: A systematic study of a traditional method, J. Hazard. Mater., 141 (2007) 834–834.
  9. C. Prochaska, A. Zouboulis, Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate, Ecol. Eng., 26 (2006) 293–303.
  10. D. Zhao, A.K. Sengupta, Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers, Water Res., 32 (1998) 1613–1625.
  11. P.E. Lamoreaux, B.A. Memon, H. Idris, Groundwater development, Kharga Oases, Western Desert of Egypt: A long-term environmental concern, Environ. Geol. Water Sci., 7 (1985) 129–149.
  12. A.M. Ebraheem, S. Riad, P. Wycisk, A.M.S. El Nasr, Simulation of impact of present and future groundwater extraction from the non-replenished Nubian Sandstone Aquifer in SW Egypt, Environ. Geol., 43 (2002) 188–196.
  13. W.E. Mahmod, K. Watanabe, A.A. Zahr-Eldeen, Analysis of groundwater flow in arid areas with limited hydrogeological data using the Grey Model: a case study of the Nubian Sandstone, Kharga Oasis, Egypt, Hydrogeol. J., 21 (2013) 1021–1034.
  14. W.E. Mahmod, K. Watanabe, Modified grey model and its application to groundwater flow analysis with limited hydrogeological data: a case study of the Nubian Sandstone, Kharga Oasis, Egypt. Environ. Monit. Assess., 186 (2014) 1063–1081.
  15. M. Gad, K. Dahab, H. Ibrahim, Impact of iron concentration as a result of groundwater exploitation on the Nubian sandstone aquifer in El Kharga Oasis, western desert, Egypt, NRIAG-JAG (2016) doi:10.1016/j.nrjag.2016.04.003.
  16. Environmental action Plan New Valley Governorate, State Ministry of Environment - EEAA (2008).
  17. H.H. Sait, A. Hussain, A.A. Salema, F.N. Ani, Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis, Bioresour. Technol., 118 (2012) 382–389.
  18. D.Z. Husein, Adsorption and removal of mercury ions from aqueous solution using raw and chemically modified Egyptian mandarin peel, Desal. Water Treat., 51 (2013) 6761–6769.
  19. M. Ehsan, M.A. Barakat, D.Z. Husein, S.M. Ismail, Immobilization of Ni and Cd in soil by biochar derived from unfertilized dates, Water Air Soil Pollut., (2014) 2125–2123.
  20. H. Kehl, R. Bornkamm, Landscape ecology and vegetation units of the western desert of Egypt. In B. Meissner, P. Wycisk (Eds.) Geopotential ecology: analysis of a desert region. Catena Suppl., 26 (1993) 155–178.
  21. APHA, AWWA, WPCF, Standard methods for the examination of water and wastewater, 18th ed., American Public Health Association, Washington, USA, 1992.
  22. D.Z. Husein, E. Aazam, M. Battia, Adsorption of cadmium(II) onto watermelon rind under microwave radiation and application into surface water from Jeddah, Saudi Arabia. Arab, J. Sci. Eng., 42 (2017) 2403–2415.
  23. R.A. Nasser, An evaluation of the use of midribs from common date palm cultivars grown in Saudi Arabia for energy production, Bio. Resour., 9 (2014) 4343–4357.
  24. WHO: WHO Guidelines for drinking water quality. First Addendum to 3rd ed., Geneva, 2006.
  25. V. Premlata, Multivariant analysis of drinking water quality parameters of lake Pichhola in Udaipur. India, Biol. Forum Int J., 1 (2009) 97–102.
  26. R. Udhayakumar, P. Manivannan, K. Raghu, S. Vaideki, Assessment of physico-chemical characteristics of water in Tamilnadu, Ecotoxicol. Environ. Saf., 134 (2016) 474–477.
  27. R. Han, L. Zou, X. Zhao, Y. Xu, F. Xu, Y. Li, Y. Wang, Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper(II) from solution in fixed bed column, Chem. Eng. J., 149 (2009) 123–131.
  28. E. Oguz, M. Ersoy, Removal of Cu2+ from aqueous solution by adsorption in a fixed bed column and neural network modeling, Chem. Eng. J., 164 (2010) 56–62.
  29. D.Z. Husein, T. Al-Radadi, E.Y. Danish, Adsorption of phosphate using alginate-/zirconium-grafted newspaper pellets: fixed-bed column study and application, Arab. J. Sci. Eng., 42 (2016) 1399–1412.
  30. S. Lagergern, About the theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad. Handl., 24 (1898) 1–39.
  31. G. Mckay, Y.S. Ho, Psuedo-second order model for sorption processes, Process. Biochem., 34 (1999) 451–465.
  32. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. Proc. Am. Soc. Civil. Eng., 89 (1963) 31–59.
  33. W. Weber, J. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  34. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  35. H.M.F. Freundlich, Uber die adsorption in Losungen [Over the adsorption in solution], Z. Phys. Chem., 57 (1906) 385–470.
  36. M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physicochim., USSR, 12 (1940) 217–222.
  37. E.A. Da Silva, E.S. Cossich, C.R.G. Tavares, L.C. Filho, R. Guirardello, Modeling of copper(II) biosorption by marine alga Sargassum sp. in fixed-bed column, Process Biochem., 38 (2002) 791–799.
  38. C.A. Henriques, A.C.A. da Costa, M.M. dos Reis, A.L.H. Costa, A.S. Luna, Batch and fixed-bed column biosorption of manganese ion by Sargassum filipendula, Electron. J. Biotechnol., 14 (2011) 8–8.
  39. A. Shahbazi, H. Younesi, A. Badiei, Batch and fixed-bed column adsorption of Cu(II), Pb(II) and Cd(II) from aqueous solution onto functionalised SBA-15 mesoporous silica, Can. J. Chem. Eng., 91 (2013) 739–750.
  40. M. Jang, W. Chen, F.S. Cannon, Preloading hydrous ferric oxide into granular activated carbon for arsenic removal, Environ. Sci. Technol., 42 (2008) 3369–3374.
  41. M. Şener, B. Kayan, S. Akay, B. Gözmen, D. Kalderis, Fe-modified sporopollenin as a composite biosorbent for the removal of Pb2+ from aqueous solutions, Desal. Water Treat., 3994 (2016) 1–19.
  42. S.S. Mayakaduwa, P. Kumarathilaka, I. Herath, M. Ahmad, M. Al-Wabel, Y.S. Ok, A. Usman, A. Abduljabbar, M. Vithanage, Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal, Chemosphere, 144 (2016) 2516– 2521.
  43. M. Uchimiya, I.M. Lima, K.T. Klasson, S. Chang, L.H. Wartelle, J.E. Rodgers, Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil, J. Agric. Food Chem., 58 (2010) 5538–5544.
  44. P. Nautiyal, K.A. Subramanian, M.G. Dastidar, Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: alternate use of waste of biodiesel industry, J. Environ. Manage., 182 (2016) 187–197.
  45. S. Fan, J. Tang, Y. Wang, H. Li, H. Zhang, J. Tang, Z. Wang, X. Li, Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: kinetics, isotherm, thermodynamic and mechanism, J. Mol. Liq., 220 (2016) 432–441.
  46. X. Cao, W. Harris, Properties of dairy-manure-derived biochar pertinent to its potential use in remediation, Bioresour. Technol., 101 (2010) 5222–5228.
  47. S. Fan, J. Tang, Y. Wang, H. Li, H. Zhang, J. Tang, Z. Wang, X. Li, Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism, J. Mol. Liq., 220 (2016) 432–441.
  48. M. Keiluweit, M. Kleber, Molecular-level interactions in soils and sediments: the role of aromatic p-systems, Environ. Sci. Technol., 43 (2009) 3421–3429.
  49. M.L. Pierce, C.B. Moore, Adsorption of arsenite and arsenate on amorphous iron hydroxide, Water Res., 16 (1982) 1247–1253.
  50. Q. Yang, X. Wang, W. Luo, J. Sun, Q. Xu, F. Chen, J. Zhao, S. Wang, F. Yao, D. Wang, X. Li, G. Zeng, Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge, Bioresour. Technol., 247 (2018) 537–544.
  51. J. Ren, N. Li, L. Li, J.K. An, L. Zhao, N.Q. Ren, Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water, Bioresour. Technol., 178 (2015) 119–125.
  52. Z. Wang, D. Shen, F. Shen, T. Li, Phosphate adsorption on lanthanum loaded biochar, Chemosphere, 150 (2016) 1–7.
  53. W. Ding, X. Dong, I.M. Ime, B. Gao, L.Q. Ma, Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars, Chemosphere, 62 (2014) 1912–1918.
  54. D.L. Sparks, Environmental soil chemistry. 2nd ed. Academic Press, New York. 2003.
  55. S. Wan, S. Wang, Y. Li, B. Gao, Functionalizing biochar with Mg-Al and Mg-Fe layered double hydroxides for removal of phosphate from aqueous solutions, J. Ind. Eng. Chem., 47 (2017) 246–253.