References
- H.S. Ibrahim, T.S. Jamil, E.Z. Hegazy, Application of zeolite
prepared from Egyptian kaolin for the removal of heavy metals:
II. Isotherm models, J. Hazard. Mater., 182 (2010) 842–847.
- M. Ghaedi, S. Hajati, F. Karimi, B. Barazesh, G. Ghezelbash,
Equilibrium, kinetic and isotherm of some metal ion biosorption,
J. Ind. Eng. Chem., 19 (2013) 987–992.
- W. Qiu, Y. Zheng, Removal of lead, copper, nickel, cobalt, and
zinc from water by a cancrinite-type zeolite synthesized from
fly ash, Chem. Eng. J., 145 (2009) 483–488.
- H. Karadede-Akin, E. Ünlü, Heavy metal concentrations in
water, sediment, fish and some benthic organisms from Tigris
River, Turkey, Environ. Monit. Assess., 131 (2007) 323–337.
- T.S. Jamil, H.S. Ibrahim, I.H. Abd El-Maksoud, S.T. El-Wakeel,
Application of zeolite prepared from Egyptian kaolin for
removal of heavy metals: I. Optimum conditions, Desalination,
258 (2010) 34–40.
- B. Alyüz, S. Veli, Kinetics and equilibrium studies for the
removal of nickel and zinc from aqueous solutions by ion
exchange resins, J. Hazard. Mater., 167 (2009) 482–488.
- S.M. Kanawade, R.W. Gaikwad, Lead ion removal from industrial
effluent by using biomaterials as an adsorbent, Int. J.
Chem. Eng. Appl., 2 (2011) 196–198.
- Y.F. Tao, Y. Qiu, S.Y. Fang, Z.Y. Liu, Y. Wang, J.H. Zhu, Trapping
the lead ion in multi-components aqueous solution by natural
clinoptilolite, J. Hazard. Mater., 180 (2010) 282–288.
- World Health Organization (WHO), Guidelines for Drinking-water Quality, World Health, 1 (2011) 104–108.
- EU-legislation doc., Transposition of the " Council Directive
98/83/EC of 3 Nov 1998 on quality of water intended for
human consumption " into the national laws in the EU
associated countries, 1999. http://www.szu.cz/uploads/documents/chzp/voda/pdf/proc99.pdf.
- K.S. Hui, C.Y.H. Chao, S.C. Kot, Removal of mixed heavy metal
ions in wastewater by zeolite 4A and residual products from
recycled coal fly ash, J. Hazard. Mater., 127 (2005) 89–101.
- A. Nilchi, R. Saberi, M. Moradi, H. Azizpour, R. Zarghami,
Adsorption of cesium on copper hexacyanoferrate-PAN composite
ion exchanger from aqueous solution, Chem. Eng. J., 172
(2011) 572–580.
- A.A. Mohammed, Biosorption of lead, cadmium, and zinc onto
sunflower shell: equilibrium, kinetic, and thermodynamic
studies, Iraqi J. Chem. Pet. Eng., 16 (2015) 91–105.
- X.D. Liu, Y.P. Wang, X.M. Cui, Y. He, J. Mao, Influence of synthesis
parameters on NaA zeolite crystals, Powder Technol.,
243 (2013) 184–193.
- S.M. Auerbach, K.A. Carrado, P.K. Dutta, P.K. Payra, Pramatha
and Dutta, Handbook of Zeolite Science and Technology,
Handb. Zeolite Sci. Technol., (2003) 1–19.
- D.A.D.H.-D. Rio, S.M. Al-Jubouri, S.M. Holmes, Hierarchical
porous structured zeolite composite for removal of ionic contaminants
from waste streams, Chim. Oggi - Chem. Today, 35
(2017) 26–29.
- L.E. Smart, E.A. Moore, Solid state chemistry: An Introduction,
Third Edit, Taylor & Francis Group, Boca Raton London New
York Singapore, 2005.
- R.F. de Farias, Interface Science and Technology, 17 (2009) 109–112.
- E.B.G. Johnson, S.E. Arshad, Hydrothermally synthesized zeolites
based on kaolinite: A review, Appl. Clay Sci., 97–98 (2014)
215–221.
- X. Zhang, D. Tong, W. Jia, D. Tang, X. Li, R. Yang, Studies on
room-temperature synthesis of zeolite NaA, Mater. Res. Bull.,
52 (2014) 96–102.
- X. Zhang, D. Tang, G. Jiang, Synthesis of zeolite NaA at room
temperature: The effect of synthesis parameters on crystal size
and its size distribution, Adv. Powder Technol., 24 (2013) 689–696.
- C.A. Ríos, C.D. Williams, O.M. Castellanos, Crystallization
of low silica Na-A and Na-X zeolites from transformation of
kaolin and obsidian by alkaline fusion., Cristal. Zeolitas Na-A
y Na-X Bajas En Sílice a Partir La Transform. Caolín y Obs. Por
Fusión Alcalina. 14 (2012) 125–137.
- R.M. Mohamed, A.a. Ismail, G. Kini, I.a. Ibrahim, B. Koopman,
Synthesis of highly ordered cubic zeolite A and its ion-exchange
behavior, Colloids Surfaces A Physicochem. Eng. Asp.,
348 (2009) 87–92.
- A.R. Loiola, J.C.R.A. Andrade, J.M. Sasaki, L.R.D. da Silva,
Structural analysis of zeolite NaA synthesized by a cost-effective
hydrothermal method using kaolin and its use as water
softener, J. Colloid Interface Sci., 367 (2012) 502–508.
- G. Tutuncu, Analysis and interpretation of diffraction data
from complex, anisotropic materials, Iowa State University,
2010.
- L. Lutterotti, S. Matthies, H.R. Wenk, A.S. Schultz, J.W. Richardson,
Combined texture and structure analysis of deformed
limestone from time-of-flight neutron diffraction spectra, J.
Appl. Phys., 81 (1997) 594–600.
- L. Lutterotti, R. Vasin, H.R. Wenk, Rietveld texture analysis
from synchrotron diffraction images, I. Calibration and basic
analysis, Powder Diffr., 29 (2014) 76–84.
- N.C. Popa, The (hkl) Dependence of diffraction-line broadening
caused by strain and size for all laue groups in rietveld
refinement, J. Appl. Crystallogr., 31 (1998) 176–180.
- A. Leineweber, Understanding anisotropic micro strain broadening
in Rietveld refinement, Z. Krist., 226 (2011) 905–923.
- A. Palčić, B. Subotić, V. Valtchev, J. Bronić, Nucleation and crystal
growth of zeolite A synthesised from hydro gels of different
density, Cryst. Eng. Comm., 15 (2013) 5784.
- E.C. Soule, N. Falls, US2882243, (1943) 19–22.
- H. Robson, Verified synthesis of zeolitic materials, Elsevier
Science, 2001.
- S.M. Al-Jubouri, B.I. Waisi, S.M. Holmes, Rietveld texture
refinement analysis of LTA zeolite from X-Ray diffraction data,
J. Eng. Sci. Technol., 13 (2018) 4066–4077.
- Image processing and analysis in Java, Image J. Software,
https://Imagej.Nih.Gov/Ij/Index.html. 2018.
- R. Nightingale, Phenomenological theory of ion solvation.
effective radii of hydrated ions, J. Phys. Chem., 63 (1959) 1381–1387.
- S.M. Al-Jubouri, N.A. Curry, S.M. Holmes, Hierarchical porous
structured zeolite composite for removal of ionic contaminants
from waste streams and effective encapsulation of hazardous
waste, J. Hazard. Mater., 320 (2016) 241–251.
- J.W. L. Puppe, Catalysis and Zeolites, First, Springer-Verlag
Berlin Heidelberg GmbH, Germany, 1999.
- K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology,
2nd ed., Elsevier, Amsterdam - Oxford - New York - Tokyo, 2013.
- J. Cejka, H. Van Bekkum, A. Corma, F. Schüth, Introduction
to zeolite science and practice, Elsevier BV Amsterdam, Neth,
2007.
- C.A.R. Reyes, C.D. Williams, O.M.C. Alarcón, Synthesis of zeolite
LTA from thermally treated kaolinite | Síntesis de zeolita
LTA a partir de caolinita tratada térmicamente, Rev. Fac. Ing.,
(2010) 30–41.
- A.a. Ismail, R.M. Mohamed, I.a. Ibrahim, G. Kini, B. Koopman,
Synthesis, optimization and characterization of zeolite A and
its ion-exchange properties, Colloids Surfaces, A Physicochem.
Eng. Asp., 366 (2010) 80–87.
- L. Lutterotti, Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction,
Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact.
with Mater. Atoms, 268 (2010) 334–340.
- S.M. Shaheen, A.S. Derbalah, F.S. Moghanm, Removal of
heavy metals from aqueous solution by zeolite in competitive
sorption system, Int. J. Environ. Sci. Dev., 3 (2012) 362–367.
- M.A. Wassel, H.A. Shehata, H.F. Youssef, A.S. Elzaref, A.
Fahmy, Nickel ions adsorption by prepared zeolite-A: Examination
of process parameters, Kinet. Isotherm., 3 (2016) 422–429.
- H. Karimi, Effect of pH and initial Pb(II) concentration
on the lead removal efficiency from Industrial wastewater
using Ca(OH)2, Int. J. Water Wastewater Treat., 3 (2017).
doi:10.16966/2381-5299.139.
- A.L. Ciosek, G.K. Luk, Kinetic modelling of the removal of
multiple heavy metallic ions from mine waste by natural
zeolite sorption, Water (Switzerland), 9 (2017). doi: 10.3390/w9070482.
- A. Zendelska, M. Golomeova, K. Lisichkov, S. Kuvendziev,
Characterization and application of clinoptilolite for removal
of heavy metal ions from water resources, Geol. Maced., 32
(2018) 21–32.
- J.S. Kim, M.A. Keane, Ion exchange of divalent cobalt and iron
with Na–Y zeolite: binary and ternary exchange equilibria, J.
Colloid Interface Sci., 232 (2000) 126–132.
- S.M. Al-Jubouri, S.M. Holmes, Hierarchically porous zeolite
X composites for manganese ion-exchange and solidification:
Equilibrium isotherms, kinetic and thermodynamic studies,
Chem. Eng. J., 308 (2017) 476–491.