References

  1. H.S. Ibrahim, T.S. Jamil, E.Z. Hegazy, Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models, J. Hazard. Mater., 182 (2010) 842–847.
  2. M. Ghaedi, S. Hajati, F. Karimi, B. Barazesh, G. Ghezelbash, Equilibrium, kinetic and isotherm of some metal ion biosorption, J. Ind. Eng. Chem., 19 (2013) 987–992.
  3. W. Qiu, Y. Zheng, Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash, Chem. Eng. J., 145 (2009) 483–488.
  4. H. Karadede-Akin, E. Ünlü, Heavy metal concentrations in water, sediment, fish and some benthic organisms from Tigris River, Turkey, Environ. Monit. Assess., 131 (2007) 323–337.
  5. T.S. Jamil, H.S. Ibrahim, I.H. Abd El-Maksoud, S.T. El-Wakeel, Application of zeolite prepared from Egyptian kaolin for removal of heavy metals: I. Optimum conditions, Desalination, 258 (2010) 34–40.
  6. B. Alyüz, S. Veli, Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins, J. Hazard. Mater., 167 (2009) 482–488.
  7. S.M. Kanawade, R.W. Gaikwad, Lead ion removal from industrial effluent by using biomaterials as an adsorbent, Int. J. Chem. Eng. Appl., 2 (2011) 196–198.
  8. Y.F. Tao, Y. Qiu, S.Y. Fang, Z.Y. Liu, Y. Wang, J.H. Zhu, Trapping the lead ion in multi-components aqueous solution by natural clinoptilolite, J. Hazard. Mater., 180 (2010) 282–288.
  9. World Health Organization (WHO), Guidelines for Drinking-water Quality, World Health, 1 (2011) 104–108.
  10. EU-legislation doc., Transposition of the " Council Directive 98/83/EC of 3 Nov 1998 on quality of water intended for human consumption " into the national laws in the EU associated countries, 1999. http://www.szu.cz/uploads/documents/chzp/voda/pdf/proc99.pdf.
  11. K.S. Hui, C.Y.H. Chao, S.C. Kot, Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard. Mater., 127 (2005) 89–101.
  12. A. Nilchi, R. Saberi, M. Moradi, H. Azizpour, R. Zarghami, Adsorption of cesium on copper hexacyanoferrate-PAN composite ion exchanger from aqueous solution, Chem. Eng. J., 172 (2011) 572–580.
  13. A.A. Mohammed, Biosorption of lead, cadmium, and zinc onto sunflower shell: equilibrium, kinetic, and thermodynamic studies, Iraqi J. Chem. Pet. Eng., 16 (2015) 91–105.
  14. X.D. Liu, Y.P. Wang, X.M. Cui, Y. He, J. Mao, Influence of synthesis parameters on NaA zeolite crystals, Powder Technol., 243 (2013) 184–193.
  15. S.M. Auerbach, K.A. Carrado, P.K. Dutta, P.K. Payra, Pramatha and Dutta, Handbook of Zeolite Science and Technology, Handb. Zeolite Sci. Technol., (2003) 1–19.
  16. D.A.D.H.-D. Rio, S.M. Al-Jubouri, S.M. Holmes, Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams, Chim. Oggi - Chem. Today, 35 (2017) 26–29.
  17. L.E. Smart, E.A. Moore, Solid state chemistry: An Introduction, Third Edit, Taylor & Francis Group, Boca Raton London New York Singapore, 2005.
  18. R.F. de Farias, Interface Science and Technology, 17 (2009) 109–112.
  19. E.B.G. Johnson, S.E. Arshad, Hydrothermally synthesized zeolites based on kaolinite: A review, Appl. Clay Sci., 97–98 (2014) 215–221.
  20. X. Zhang, D. Tong, W. Jia, D. Tang, X. Li, R. Yang, Studies on room-temperature synthesis of zeolite NaA, Mater. Res. Bull., 52 (2014) 96–102.
  21. X. Zhang, D. Tang, G. Jiang, Synthesis of zeolite NaA at room temperature: The effect of synthesis parameters on crystal size and its size distribution, Adv. Powder Technol., 24 (2013) 689–696.
  22. C.A. Ríos, C.D. Williams, O.M. Castellanos, Crystallization of low silica Na-A and Na-X zeolites from transformation of kaolin and obsidian by alkaline fusion., Cristal. Zeolitas Na-A y Na-X Bajas En Sílice a Partir La Transform. Caolín y Obs. Por Fusión Alcalina. 14 (2012) 125–137.
  23. R.M. Mohamed, A.a. Ismail, G. Kini, I.a. Ibrahim, B. Koopman, Synthesis of highly ordered cubic zeolite A and its ion-exchange behavior, Colloids Surfaces A Physicochem. Eng. Asp., 348 (2009) 87–92.
  24. A.R. Loiola, J.C.R.A. Andrade, J.M. Sasaki, L.R.D. da Silva, Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener, J. Colloid Interface Sci., 367 (2012) 502–508.
  25. G. Tutuncu, Analysis and interpretation of diffraction data from complex, anisotropic materials, Iowa State University, 2010.
  26. L. Lutterotti, S. Matthies, H.R. Wenk, A.S. Schultz, J.W. Richardson, Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra, J. Appl. Phys., 81 (1997) 594–600.
  27. L. Lutterotti, R. Vasin, H.R. Wenk, Rietveld texture analysis from synchrotron diffraction images, I. Calibration and basic analysis, Powder Diffr., 29 (2014) 76–84.
  28. N.C. Popa, The (hkl) Dependence of diffraction-line broadening caused by strain and size for all laue groups in rietveld refinement, J. Appl. Crystallogr., 31 (1998) 176–180.
  29. A. Leineweber, Understanding anisotropic micro strain broadening in Rietveld refinement, Z. Krist., 226 (2011) 905–923.
  30. A. Palčić, B. Subotić, V. Valtchev, J. Bronić, Nucleation and crystal growth of zeolite A synthesised from hydro gels of different density, Cryst. Eng. Comm., 15 (2013) 5784.
  31. E.C. Soule, N. Falls, US2882243, (1943) 19–22.
  32. H. Robson, Verified synthesis of zeolitic materials, Elsevier Science, 2001.
  33. S.M. Al-Jubouri, B.I. Waisi, S.M. Holmes, Rietveld texture refinement analysis of LTA zeolite from X-Ray diffraction data, J. Eng. Sci. Technol., 13 (2018) 4066–4077.
  34. Image processing and analysis in Java, Image J. Software, https://Imagej.Nih.Gov/Ij/Index.html. 2018.
  35. R. Nightingale, Phenomenological theory of ion solvation. effective radii of hydrated ions, J. Phys. Chem., 63 (1959) 1381–1387.
  36. S.M. Al-Jubouri, N.A. Curry, S.M. Holmes, Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste, J. Hazard. Mater., 320 (2016) 241–251.
  37. J.W. L. Puppe, Catalysis and Zeolites, First, Springer-Verlag Berlin Heidelberg GmbH, Germany, 1999.
  38. K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology, 2nd ed., Elsevier, Amsterdam - Oxford - New York - Tokyo, 2013.
  39. J. Cejka, H. Van Bekkum, A. Corma, F. Schüth, Introduction to zeolite science and practice, Elsevier BV Amsterdam, Neth, 2007.
  40. C.A.R. Reyes, C.D. Williams, O.M.C. Alarcón, Synthesis of zeolite LTA from thermally treated kaolinite | Síntesis de zeolita LTA a partir de caolinita tratada térmicamente, Rev. Fac. Ing., (2010) 30–41.
  41. A.a. Ismail, R.M. Mohamed, I.a. Ibrahim, G. Kini, B. Koopman, Synthesis, optimization and characterization of zeolite A and its ion-exchange properties, Colloids Surfaces, A Physicochem. Eng. Asp., 366 (2010) 80–87.
  42. L. Lutterotti, Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 268 (2010) 334–340.
  43. S.M. Shaheen, A.S. Derbalah, F.S. Moghanm, Removal of heavy metals from aqueous solution by zeolite in competitive sorption system, Int. J. Environ. Sci. Dev., 3 (2012) 362–367.
  44. M.A. Wassel, H.A. Shehata, H.F. Youssef, A.S. Elzaref, A. Fahmy, Nickel ions adsorption by prepared zeolite-A: Examination of process parameters, Kinet. Isotherm., 3 (2016) 422–429.
  45. H. Karimi, Effect of pH and initial Pb(II) concentration on the lead removal efficiency from Industrial wastewater using Ca(OH)2, Int. J. Water Wastewater Treat., 3 (2017). doi:10.16966/2381-5299.139.
  46. A.L. Ciosek, G.K. Luk, Kinetic modelling of the removal of multiple heavy metallic ions from mine waste by natural zeolite sorption, Water (Switzerland), 9 (2017). doi: 10.3390/w9070482.
  47. A. Zendelska, M. Golomeova, K. Lisichkov, S. Kuvendziev, Characterization and application of clinoptilolite for removal of heavy metal ions from water resources, Geol. Maced., 32 (2018) 21–32.
  48. J.S. Kim, M.A. Keane, Ion exchange of divalent cobalt and iron with Na–Y zeolite: binary and ternary exchange equilibria, J. Colloid Interface Sci., 232 (2000) 126–132.
  49. S.M. Al-Jubouri, S.M. Holmes, Hierarchically porous zeolite X composites for manganese ion-exchange and solidification: Equilibrium isotherms, kinetic and thermodynamic studies, Chem. Eng. J., 308 (2017) 476–491.