References

  1. E.K. Morali, N. Uzal, U. Yetis, Ozonation pre and post-treatment of denim textile mill effluents: Effect of cleaner production measures, J. Cleaner Prod., 137 (2016) 1–9.
  2. L. Chen, L. Wang, X. Wu, X. Ding, A process-level water conservation and pollution control performance evaluation tool of cleaner production technology in textile industry, J. Cleaner Prod., 143 (2017) 1137–1143.
  3. C. Phalakornkule, S. Polgumhang, W. Tongdaung, B. Karakat, T. Nuyut, Electrocoagulation of blue reactive, red disperse and mixed dyes, and application in treating textile effluent, J. Environ. Manag., 91 (2010) 918–926.
  4. V. Khandegar, A.K. Saroha, Electrochemical treatment of textile effluent containing acid Red 131 dye, J. Hazard. Toxic Radioact. Waste., 18(1) (2014) 38–44.
  5. C.D. Raman, Textile dye degradation using nano zero valent iron: A review, J. Environ. Manage., 177 (2016) 341–355.
  6. G.T. Guyer, K. Nadeem, D. Nadir, Recycling of pad-batch washing textile wastewater through advanced oxidation processes and its reusability assessment for Turkish textile industry, J. Cleaner Prod., 139 (2016) 488–494.
  7. M.A. Ubale, V.D. Salkar, Experimental study on electrocoagulation of textile wastewater by continuous horizontal flow through aluminum baffles, Korean J. Chem. Eng., 34, (2017) 1044–1047.
  8. B.K. Korbahti, A. Tanyolac, Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: Optimization through response surface methodology, J. Hazard. Mater., 151 (2008) 422–431.
  9. M. Kobya, E. Gengec, E. Demirbas, Chem. Eng. Process., 101 (2016) 87–100.
  10. T. Saraswathy, A. Singh, S. Ramesh, S. Thanga, New trends in Electrocoagulation for the removal for dyes from wastewater: A review, Environ. Eng. Sci., 30(7) (2013) DOI: 10.1089/ees.2012.0417.
  11. A.R. Amani-Ghadim, A. Olad, S. Aber, H. Ashassi-Sorkhabi, Comparison of organic dyes removal mechanism in electrocoagulation process using iron and aluminum anodes, Environ. Prog. Sustain. Energy, 32(3) (2013) 547–556.
  12. A. Bafana, S.S. Devi, T. Chakrabarti, Azo dyes: past, present and the future, Environ. Rev., 19 (2011) 350–371.
  13. T.H. Kim, C. Park, E.B. Shin, S. Kim. Decolorization of disperse and reactive dyes by continuous electrocoagulation process, Desalination, 150 (2002) 165–175.
  14. B. Merzouk, K. Madani, A. Sekki, Using electrocoagulation-electroflotation technology to treat synthetic solution and textile wastewater, two case studies, Desalination, 250 (2010) 573–577.
  15. H. Kusic, N. Koprivanac, L. Srsan, Azo dye degradation using Fenton type processes assisted by UV irradiation: A kinetic study, J. Photochem. Photobiol. A: Chem., 181 (2006) 195–202.
  16. S. Singh, V.C. Srivastava, I.D. Mall, Mechanistic study of electrochemical treatment of basic green 4 dye with aluminum electrodes through zeta potential, TOC, COD and color measurements, and characterization of residues, RSC Adv., 3 (2013) 16426–16439.
  17. A. Akyol, Treatment of paint manufacturing wastewater by electrocoagulation, Desalination, 285 (2012) 91–99.
  18. N. Daneshvar, A. Oladegaragoze, N. Djafarzadeh, Decolorization of basic dyes by electrocoagulation: An investigation of the effect of operational parameters, J. Hazard. Mater. B, 129 (2006) 116–122.
  19. N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters, J. Photochem. Photobiol. A, 157 (2003) 111–116.
  20. D.T. Moussa, M.H. El-Naas, M. Nasser, M.J. Al-Marri, A comprehensive review of electrocoagulation for water treatment: Potentials and challenges, J. Environ. Manag., 186 (2017) 24–41.
  21. B. Merzouk, M. Yakoubi, I. Zongo, J.P. Leclerc, G. Paternotte, S. Pontvianne, S. Pontvianne, F. Lapicque, Effect of modification of textile wastewater composition on electrocoagulation efficiency, Desalination, 275 (2011) 181–186.
  22. J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches, Desalination, 404 (2017) 1–21.
  23. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38(1) (2004) 11–41.
  24. M.Y.A. Mollah, P. Morkovskyb, J. Gomesc, M. Kesmezc, J. Pargad, D.L. Cockec, Fundamentals, present and future perspectives of eletrocoagulation, J. Hazard. Mater., 114 (2014) 199–210.
  25. S. Zodi, B. Merzouk, O. Potier, F. Lapicque, J.P. Leclerc, Direct red 81 dye removal by a continuous flow electrocoagulation/flotation reactor, Sep. Purif. Technol., 108 (2013) 215–222.
  26. P. Cañizares, F. Martínez, C. Jiménez, J. Lobato, M.A. Rodrigo, Coagulation, electrocoagulation of wastes polluted with dyes, Environ. Sci. Technol., 40 (2006) 6418–6424.
  27. J. Duan, J. Gregory, Coagulation by hydrolysing metal salts, Adv. Colloid Interface Sci., 100–102 (2003) 475–502.
  28. A.R. Amani Ghadim, Optimization of electrocoagulation process for removal of an azo dye using response surface methodology and investigation on the occurrence of destructive side reactions, Chem. Eng. Process., 64 (2012) 68–78.
  29. U.D. Patel, J.P. Ruparelia, M.U. Patel, Electrocoagulation treatment of simulated floor-wash containing Reactive Black 5 using iron sacrificial anode, J. Hazard. Mater., 197 (2011) 128–136.
  30. B.K. Nandi, S. Patel, S. Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation, Arab. J. Chem., 10(2) (2017) S2961–S2968.
  31. E. Pajootan, M. Arami, N.M. Mahmoodi, Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters, J. Taiwan. Inst. Chem. Eng., 43 (2012) 282–290.
  32. B.S. Santos, E. Eyng, P.R.S. Bittencourt, L.M. Frare, E.L. Flores, M.B. Costa, Electro-flocculation associated with the extract of Moringa oleifera Lam as natural coagulant for the removal of reactive blue 5G dye, Acta. Sci. Technol., 38(4) (2016) 438–444.
  33. W. Bouguerra, K. Brahmi, E. Elimame, M. Loungou, B. Hamrouni, Optimization of electrocoagulation operating parameters and reactor design for zinc removal: application to industrial Tunisian wastewater, Desal. Water Treat., 56(10) (2015) 2672–2681.
  34. P.K. Holt, G.W. Barton, C.A. Mitchell, The future for electrocoagulation as a localized water treatment technology, Chemosphere, 59(3) (2005) 355–367.
  35. P. Cañizares, C. Jiménez, F. Martínez, M.A. Rodrigo, C. Sáez, The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters, J. Hazard. Mater., 163 (2008) 158–164.
  36. K.L. Dubrawski, C. Du, M. Mohseni, General potential-current model and validation for electrocoagulation, Electrochim. Acta., 129 (2014) 187–195.
  37. A. Vázquez, I. Rodríguez, I. Lázaro, Primary potential and current density distribution analysis: A first approach for designing electrocoagulation reactors, Chem. Eng. J., 179 (2012) 253–261.
  38. A. Vázquez, J.L. Nava, R. Cruz, I. Lázaro, I. Rodríguez, The importance of current distribution and cell hydrodynamic analysis for the design of electrocoagulation reactors, J. Chem. Technol. Biotechnol., 89 (2014) 220–229.
  39. T. Yehya, M. Chafi, W. Balla, C. Vial, A. Essadki, B. Gourich, Experimental analysis and modeling of denitrification using electrocoagulation process, Sep. Purif. Technol., 132 (2014) 644–654.
  40. A.E. Yilmaz, R. Boncukcuoglu, M.M. Kocakerim, E. Kocadagistan, An empirical model for kinetics of boron removal from boron containing wastewaters by the electrocoagulation method in a batch reactor, Desalination, 230 (2008) 288–297.
  41. M.H. Isa, E.H. Ezechi, Z. Ahmed, S.R.M. Kutty, Boron removal by electrocoagulation and recovery, Water Res., 51 (2010) 113–123.
  42. K. Chithra, N. Balasubramanian, Modeling electrocoagulation through adsorption kinetics, J. Model. Simul. Syst., 1(2) (2010) 124–130.
  43. E.H. Ezechi, M.H. Isa, S.R.M. Kutty, A. Yaqub, Boron removal from produced water using electrocoagulation, Process Saf. Environ. Prot., 92 (2014) 509–514.
  44. A.N. Ghanim, S.K. Ajjam, Modeling of textile wastewater electrocoagulation via adsorption isotherm kinetics, Iraqi J. Mech. Mater. Eng., 13(1) (2013) 49–62.
  45. S. Vasudevan, J. Lakshmi, G. Sozhan, Electrochemically assisted coagulation for the removal of boron from water using zinc anode, Desalination, 310 (2013) 122–129.
  46. V. Khatibimakal, A. Torabiam, F. Janpoor, G. Hoshyaripour, Fluoride removal from industrial wastewater using electrocoagulation and its adsorption kinetics, J. Hazard. Mater., 179 (2010) 276–280.
  47. M. Carrillo, J.M. González, A new approach to modelling sigmoidal curves. Departamento de Economía Aplicada, Universidad de La Laguna, Tenerife, Canary Islands, Spain, 2002.
  48. A.H. Bilge, Y. Ozdemir, The Critical Point of a Sigmoidal Curve: The Generalized Logistic Equation Example, Cornell University, 2014.
  49. Q. Cai, B. Turner, D. Sheng, S. Sloan, The kinetics of fluoride sorption by zeolite: Effects of cadmium, barium and manganese, J. Contam. Hydrol., 177–178 (2015) 136–147.
  50. A. Çelekli, G. Ilguna, H. Bozkurt, Sorption equilibrium, kinetic, thermodynamic, and desorption studies of Reactive Red 120 on Characontraria, Chem. Eng. J., 191 (2012) 228–235.
  51. A. Çelekli, H. Bozkurt, Sorption and desorption studies of a reactive azo dye on effective disposal of redundant material, Environ. Sci. Pollut. Res., 20 (2013) 4647–4658.
  52. T. Harif, M. Khai, A. Adin, Electrocoagulation versus chemical coagulation: Coagulation/flocculation mechanisms and resulting floc characteristics, Water Res., 46 (2012) 3177–3188.
  53. M.J. Matteson, R.L. Dobson, R.W. Glenn, Jr., N.S. Kukunoor, W. H. Waits Iii, E.J. Clayfield, Electrocoagulation and separation of aqueous suspensions of ultrafine particles, Colloids Surf. A, 104 (1995) 101–109.
  54. N. Koprivanac, H. Kusic, D. Vujevic, B.R. Locke, Influence of iron on degradation of organic dyes in corona, J. Hazard. Mater., 117 (2005) 113–119.
  55. M.F. Klen, Adsorption kinetics of blue 5G dye from aqueous solution on dead floating aquatic macrophyte: effect of pH, temperature, and pretreatment, Water Air Soil Pollut., 223(7) (2012) 4369–4381.
  56. C. Barrera-Dias, F. Urena-Nunes, E. Campos, M. Palomar-Pardave, M. Romero-Romo, A combined electrochemical-irradiation treatment of highly colored and polluted industrial wastewater, Radiat. Phys. Chem., 67 (2003) 657–663.
  57. M.C. Wei, K.S. Wang, C.L. Huang, C.W. Chiang, T.J. Chang, S.S. Lee, S.H. Chang, Improvement of textile dye removal by electrocoagulation with low-cost steel wool cathode reactor, Chem. Eng. J., 192 (2012) 37–44.
  58. M. Xie, M. Yu, Thermodynamic analysis of Brownian coagulation based on moment method, Int. J. Heat Mass Transfer, 122 (2018) 922–928.
  59. P.K. Holt, G.W. Barton, M. Wark, C.A. Mitchell, A quantitative comparison between chemical dosing and electrocoagulation, Colloids Surf., 211(1) (2002) 233–248.
  60. E. Bocos, E. Brilas, N. Sanroma, I. Sire, Electrocoagulation: simply a phase separation technology? The case of Bronopol compared to its treatment by EAOPs, Environ. Sci. Tech., 50 (2016) 7679–7686.