References

  1. Y. Geng, B. Doberstein, Developing the circular economy in China: Challenges and opportunities for achieving ‘leapfrog development’, Int. J. Sustain. Develop. World Ecol., 15 (2008) 231–239.
  2. Z.B. Chen, M.H. Cui, N.Q. Ren, Z.Q. Chen, H.C. Wang, S.K. Nie, Improving the simultaneous removal efficiency of COD and color in a combined HABMR-CFASR system based MPDW. Part 1: optimization of operational parameters for HABMR by using response surface methodology, Bioresour. Technol., 102 (2011) 8839–8847.
  3. B.Y. Chen, M.Y. Wang, W.B. Lu, J.S. Chang, Use of active consortia of constructed ternary bacterial cultures via mixture design for azo-dye decolorization enhancement, J. Hazard. Mater., 145 (2007) 404–409.
  4. M.H. Cui, D. Cui, L. Gao, H.Y. Cheng, A.J. Wang, Efficient azo dye decolorization in a continuous stirred tank reactor (CSTR) with built-in bioelectrochemical system, Bioresour. Technol., 218 (2016) 1307–1311.
  5. S. Sandhya, K. Swaminathan, Kinetic analysis of treatment of textile wastewater in hybrid column upflow anaerobic fixed bed reactor, Chem. Eng. J., 122 (2006) 87–92.
  6. E. Fernando, T. Keshavarz, G. Kyazze, Complete degradation of the azo dye Acid Orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature, Bioresour. Technol., 156 (2014) 155–162.
  7. M. Jayapal, H. Jagadeesan, M. Shanmugam, D.J. Perinba, S.J.J.o.H.M. Murugesan, Sequential anaerobic-aerobic treatment using plant microbe integrated system for degradation of azo dyes and their aromatic amines by-products, J. Hazard. Mater., 354 (2018) 231–243.
  8. M. Bahia, F. Passos, O.F.H. Adarme, S.F. Aquino, S.Q.J.W.E.R. Silva, Anaerobic-aerobic combined system for the biological treatment of azo dye solution using residual yeast, Water Environ. Res., 90 (2018) 729–737.
  9. M.-H. Cui, D. Cui, L. Gao, A.-J. Wang, H.-Y. Cheng, Evaluation of anaerobic sludge volume for improving azo dye decolorization in a hybrid anaerobic reactor with built-in bioelectrochemical system, Chemosphere, 169 (2017) 18–22.
  10. B. Liang, H.Y. Cheng, D.Y. Kong, S.H. Gao, F. Sun, D. Cui, F.Y. Kong, A.J. Zhou, W.Z. Liu, N.Q. Ren, W.M. Wu, A.J. Wang, D.J. Lee, Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode, Environ. Sci. Technol., 47 (2013) 5353–5361.
  11. A.J. Wang, H.Y. Cheng, B. Liang, N.Q. Ren, D. Cui, N. Lin, B.H. Kim, K. Rabaey, Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode, Environ. Sci. Technol., 45 (2011) 10186–10193.
  12. L. Huang, L. Jiang, Q. Wang, X. Quan, J. Yang, L. Chen, Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells, Chem. Eng. J., 253 (2014) 281–290.
  13. L. Huang, S. Cheng, G. Chen, Bioelectrochemical systems for efficient recalcitrant wastes treatment, J. Chem. Technol. Biotechnol., 86 (2011) 481–491.
  14. B.E. Logan, K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, Science, 337 (2012) 686–690.
  15. M.H. Cui, D. Cui, L. Gao, A.J. Wang, H.Y. Cheng, Azo dye decolorization in an up-flow bioelectrochemical reactor with domestic wastewater as a cost-effective yet highly efficient electron donor source, Water Res., 105 (2016) 520–526.
  16. D.K. Yeruva, J.S. Sravan, S.K. Butti, J.A. Modestra, S.V.J.B.T. Mohan, Spatial variation of electrode position in bioelectrochemical treatment system: design consideration for azo dye remediation, Bioresour. Technol., 256 (2018) 374.
  17. H.Y. Yang, C.S. He, L. Li, J. Zhang, J.Y. Shen, Y. Mu, H.Q.J.S.R. Yu, Process and kinetics of azo dye decolourization in bioelectrochemical systems: effect of several key factors, Scient. Rep., 6 (2016) 27243.
  18. Y. Wang, Y. Pan, T. Zhu, A. Wang, Y. Lu, L. Lv, K. Zhang, Z.J.S.o.t.T.E. Li, Enhanced performance and microbial community analysis of bioelectrochemical system integrated with bio-contact oxidation reactor for treatment of wastewater containing azo dye, Sci. Total Environ., 634 (2018) 616.
  19. D. Cui, Y.Q. Guo, H.Y. Cheng, B. Liang, F.Y. Kong, H.S. Lee, A.J. Wang, Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor, J. Hazard. Mater., 239–240 (2012) 257–264.
  20. Y. Feng, Q. Yang, X. Wang, B.E. Logan, Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells, J. Power Sources, 195 (2010) 1841–1844.
  21. Q. Sun, Z.L. Li, W.Z. Liu, D. Cui, Y.Z. Wang, J.S. Chung, A.J. Wang, Assessment of the operational parameters in bioelectrochemical system in perspective of decolorization efficiency and energy conservation, Int. J. Electrochem., 11 (2016).
  22. Y. Mu, K. Rabaey, R.A. Rozendal, Z.G. Yuan, J. Keller, Decolorization of azo dyes in bioelectrochemical systems, Environ. Sci. Technol., 43 (2009) 5137–5143.
  23. N. Yemashova, A. Telegina, I. Kotova, A. Netrusov, S. Kalyuzhnyi, Decolorization and partial degradation of selected azo dyes by methanogenic sludge, Appl. Biochem. Biotechnol., 119 (2004) 31–40.
  24. Y. Mu, R.A. Rozendal, K. Rabaey, J. Keller, Nitrobenzene removal in bioelectrochemical systems, Environ. Sci. Technol., 43 (2009) 8690–8695.
  25. S. Freguia, K. Rabaey, Z. Yuan, J. Keller, Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation, Environ. Sci. Technol., 41 (2007) 2915–2921.
  26. Y. Wang, Y. Pan, T. Zhu, A. Wang, Y. Lu, L. Lv, K. Zhang, Z. Li, Enhanced performance and microbial community analysis of bioelectrochemical system integrated with bio-contact oxidation reactor for treatment of wastewater containing azo dye, Sci. Total Environ., 634 (2018) 616–627.