References

  1. A. Asghar, A.A.A. Raman, W.M.A.W. Daud, Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review, J. Clean. Prod., 87 (2015) 826–838.
  2. D. Mostafa, Waste water treatment in textile industries - the concept and current removal technologies, J. Bio. Env. Sci., 7 (2015) 501–525.
  3. Y. Vasseghian, E.-N. Dragoi, Modeling and optimization of acid blue 193 removal by UV and peroxydisulfate process, J. Environ. Eng., 144 (2018) 06018003.
  4. E. Deletze, A. Antoniadis, V. Kitsiou, E. Kostopoulou, D. Lutic, I. Cretescu, I. Poulios, Photocatalytic treatment of colored wastewater from medical laboratories: photodegradation of Nuclear Fast Red, Desal. Water Treat., 57 (2016) 18897–18905.
  5. W. Bunmahotama, W.-N. Hung, T.-F. Lin, Simulation of the adsorption capacity of polar organic compounds and dyes from water onto activated carbons: Model development and validation, Sustain. Environ. Res., 28 (2018) 57–64.
  6. B. Mi, M. Hu, Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction and eludication of water and solute transport mechanisms, in, Google Patents, 2018.
  7. C. Tang, H. Bai, L. Liu, X. Zan, P. Gao, D.D. Sun, W. Yan, A green approach assembled multi-functional Ag/AgBr/TNF membrane for clean water production and disinfection of bacteria through utilizing visible light, Appl. Catal. B- Environ., 196 (2016) 57–67.
  8. H. Sun, J. Jiang, Y. Xiao, J. Du, Efficient removal of polycyclic aromatic hydrocarbons, dyes, and heavy metal ions by a homopolymer vesicle, ACS Appl. Mater. Interfaces, 10 (2017) 713–722.
  9. M. Hadi, G. McKay, M.R. Samarghandi, A. Maleki, M.S. Aminabad, Prediction of optimum adsorption isotherm: comparison of chi-square and Log-likelihood statistics, Desal. Water Treat., 49 (2012) 81–94.
  10. R. Rezaee, A. Maleki, A. Jafari, S. Mazloomi, Y. Zandsalimi, A.H. Mahvi, Application of response surface methodology for optimization of natural organic matter degradation by UV/H2O2 advanced oxidation process, J. Environ. Healt. Sci. Eng., 12 (2014) 67.
  11. S. Mondal, M.K. Purkait, S. De, Advances in dye removal technologies, Springer, 2018.
  12. A. Shokri, K. Mahanpoor, Using UV/ZnO process for degradation of Acid red 283 in synthetic wastewater, Bulg. Chem. Commun., 50 (2018) 27–32.
  13. T. Mousavand, S. Ohara, M. Umetsu, J. Zhang, S. Takami, T. Naka, T. Adschiri, Hydrothermal synthesis and in situ surface modification of boehmite nanoparticles in supercritical water, J. Supercrit. Fluids, 40 (2007) 397–401.
  14. S. Teixeira, P. Martins, S. Lanceros-Méndez, K. Kühn, G. Cuniberti, Re-usability of photocatalytic TiO2 and ZnO nanoparticles immobilized in poly (vinylidene difluoride)-co-trifluoroethylene, Appl. Surf. Sci., 384 (2016) 497–504.
  15. J. Gómez-Pastora, S. Dominguez, E. Bringas, M.J. Rivero, I. Ortiz, D.D. Dionysiou, Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment, Chem. Eng. J., 310 (2017) 407–427.
  16. D.N. Yadav, K.A. Kishore, B. Bethi, S.H. Sonawane, D. Bhagawan, ZnO nanophotocatalysts coupled with ceramic membrane method for treatment of Rhodamine-B dye waste water, Environ. Dev. Sustain., (2017) 1–14.
  17. R. Ameta, M.S. Solanki, S. Benjamin, S.C. Ameta, Chapter 6 - photocatalysis, in: advanced oxidation processes for waste water treatment, Academic Press, 2018, pp. 135–175.
  18. A. Maleki, B. Shahmoradi, Solar degradation of direct blue 71 using surface modified iron doped ZnO hybrid nanomaterials, Water. Sci. Tech., 65 (2012) 1923–1928.
  19. F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M.B. Said, A. Ghrabi, R. Schneider, Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis, Mater. Des., 101 (2016) 309–316.
  20. Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, Electro spun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photoc atalytic activity, ACS Appl. Mater. Interfaces, 2 (2010) 2915–2923.
  21. P.G. Ramos, E. Flores, L.A. Sánchez, R.J. Candal, M. Hojamberdiev, W. Estrada, J. Rodriguez, Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO2 nanostructures fabricated by an electro statically modified electro spinning, Appl. Surf. Sci., 426 (2017) 844–851.
  22. N. Krstulović, K. Salamon, O. Budimlija, J. Kovač, J. Dasović, P. Umek, I. Capan, Parameters optimization for synthesis of Al-doped ZnO nanoparticles by laser ablation in water, Appl. Surf. Sci., 440 (2018) 916–925.
  23. F. Ajala, A. Hamrouni, A. Houas, H. Lachheb, B. Megna, L. Palmisano, F. Parrino, The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water, Appl. Surf. Sci., 445 (2018) 376–382.
  24. O. Bechambi, M. Chalbi, W. Najjar, S. Sayadi, Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity, Appl. Surf. Sci., 347 (2015) 414–420.
  25. B. Sarma, B.K. Sarma, Fabrication of Ag/ZnO heterostructure and the role of surface coverage of ZnO micro rods by Ag nanoparticles on the photophysical and photocatalytic properties of the metal-semiconductor system, Appl. Surf. Sci., 410 (2017) 557–565.
  26. Y.-C. Chang, C.-C. Hsu, S.-H. Wu, K.-W. Chuang, Y.-F. Chen, Fabrication of Cu-doped ZnO nanoneedles on different substrate via wet chemical approach: Structural characterization and photocatalytic performance, Appl. Surf. Sci., 447 (2018) 213–221.
  27. S. Safa, S. Mokhtari, A. Khayatian, R. Azimirad, Improving ultraviolet photodetection of ZnO nanorods by Cr doped ZnO encapsulation process, Opt. Commun., 413 (2018) 131–135.
  28. N.A. Putri, V. Fauzia, S. Iwan, L. Roza, A.A. Umar, S. Budi, Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates, Appl. Surf. Sci., 439 (2018) 285–297.
  29. L.M. Trinca, A.C. Galca, A.G. Boni, M. Botea, L. Pintilie, Effect of Li doping on the electric and pyroelectric properties of ZnO thin films, Appl. Surf. Sci., 427 (2018) 29–37.
  30. S. Bhatia, N. Verma, R.K. Bedi, Corrigendum to “Sn-doped ZnO nanopetal networks for efficient photocatalytic degradation of dye and gas sensing applications”, Appl. Surf. Sci., 407 (2017) 495–502, Appl. Surf. Sci., 441 (2018) 1086.
  31. R. Beura, R. Pachaiappan, P. Thangadurai, A detailed study on Sn4+ doped ZnO for enhanced photocatalytic degradation, Appl. Surf. Sci., 433 (2018) 887–898.
  32. E. Alizadeh, H. Baseri, Catalytic degradation of Amlodipine Besylate using ZnO, Cu doped ZnO, and Fe doped ZnO nanoparticles from an aqueous solution: Investigating the effect of different parameters on degradation efficiency, Solid State Sci., 78 (2018) 86–94.
  33. S. Fabbiyola, V. Sailaja, L.J. Kennedy, M. Bououdina, J.J. Vijaya, Optical and magnetic properties of Ni-doped ZnO nanoparticles, J. Alloys Compd., 694 (2017) 522–531.
  34. B. Shahmoradi, I. Ibrahim, K. Namratha, N. Sakamoto, S. Ananda, R. Somashekar, K. Byrappa, Surface modification of indium doped ZnO hybrid nanoparticles with n-butylamine, Int. J. Chem. Eng. Res., 2 (2010) 107–117.
  35. A. Sharma, M. Verma, A. Haritash, Photocatalytic degradation of Acid Orange 7 (AO7) dye using TiO2, Int. J. Eng. Res. Technol. (RACEE 2015Conference Proceedings), 4 (2015) 34–36.
  36. F. Han, V. Kambala, R. Dharmarajan, Y. Liu, R. Naidu, Photocatalytic degradation of azo dye acid orange 7 using different light sources over Fe3+-doped TiO2 nanocatalysts, Environ. Technol. Innovation, 12 (2018) 27–42.
  37. E.H. Umukoro, S.S. Madyibi, M.G. Peleyeju, L. Tshwenya, E.H. Viljoen, J.C. Ngila, O.A. Arotiba, Photocatalytic application of Pd-ZnO-exfoliated graphite nanocomposite for the enhanced removal of acid orange 7 dye in water, Solid State Sci., 74 (2017) 118–124.
  38. A. Khani, M.R. Sohrabi, Simultaneous synthesis-immobilization of nano ZnO on perlite for photocatalytic degradation of an azo dye in semi batch packed bed photoreactor, Pol. J. Chem. Technol., 14 (2012) 69–76.
  39. H. Akhlaghi, Photocatalytic degradation for acid orange 7 using zinc oxide nanostructure prepared with activated carbon, Anal. Chem. Lett., 3 (2013) 65–69.
  40. N. Daneshvar, M. Rasoulifard, A. Khataee, F. Hosseinzadeh, Removal of CI acid orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder, J. Hazard. Mater., 143 (2007) 95–101.
  41. C. Cheng, G. Xu, H. Zhang, Y. Luo, Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism, Mater. Lett., 62 (2008) 1617–1620.
  42. M. Pirsaheb, B. Shahmoradi, M. Beikmohammadi, E. Azizi, H. Hossini, G.M. Ashraf, Photocatalytic degradation of Aniline from aqueous solutions under sunlight illumination using immobilized Cr: ZnO nanoparticles, Sci. Rep., 7 (2017) 1473.
  43. W.-E. Thung, S.-A. Ong, L.-N. Ho, Y.-S. Wong, F. Ridwan, H.K. Lehl, Y.-L. Oon, Y.-S. Oon, Biodegradation of acid orange 7 in a combined anaerobic-aerobic up-flow membrane-less microbial fuel cell: Mechanism of biodegradation and electron transfer, Chem. Eng. J., 336 (2018) 397–405.
  44. The Math Works Inc., Natick, MA, in, 2012.
  45. S.T. Bararpour, M.R. Feylizadeh, A. Delparish, M. Qanbarzadeh, M. Raeiszadeh, M. Feilizadeh, Investigation of 2-nitrophenol solar degradation in the simultaneous presence of K2S2O8 and H2O2: Using experimental design and artificial neural network, J. Clean. Prod., 176 (2018) 1154–1162.
  46. M.E. López, E.R. Rene, Z. Boger, M.C. Veiga, C. Kennes, Modelling the removal of volatile pollutants under transient conditions in a two-stage bioreactor using artificial neural networks, J. Hazard. Mater., 324 (2017) 100–109.
  47. M. Moghri, E.N. Dragoi, A. Salehabadi, D.K. Shukla, Y. Vasseghian, Effect of various formulation ingredients on thermal characteristics of PVC/clay nanocomposite foams: experimental and modeling, e-Polym., 17 (2017) 119–128.
  48. D.S. Badkar, K.S. Pandey, G. Buvanashekaran, Development of RSM-and ANN-based models to predict and analyze the effects of process parameters of laser-hardened commercially pure titanium on heat input and tensile strength, Int. J. Adv. Manuf. Tech., 65 (2013) 1319–1338.
  49. Y. Vasseghian, M. Ahmadi, M. Joshaghani, Simultaneous ash and sulphur removal from bitumen using column flotation technique: Experiments, RSM modeling and optimization, Phys. Chem. Res., 5 (2017) 195–204.
  50. S. Ghoreishi, E. Heidari, Extraction of epigallocatechin-3-gallate from green tea via supercritical fluid technology: neural network modeling and response surface optimization, J. Supercrit. Fluids, 74 (2013) 128–136.
  51. Y. Vasseghian, M. Ahmadi, M. Joshaghani, Ultrasound assisted ash and sulphur removal from bitumen using column flotation technique: Experimental, RSM and ANN methods in modelling and optimization of process, Iran. J. Sci. Technol., Trans. A: Sci., 41 (2017) 1149–1163.
  52. A. Esmaeili, E. Hejazi, Y. Vasseghian, Comparison study of biosorption and coagulation/air flotation methods for chromium removal from wastewater: experiments and neural network modeling, RSC Adv., 5 (2015) 91776–91784.
  53. G. Huang, J. Wang, X. Zhong, G. Zhou, H. Yan, Synthesis, structure, and room-temperature ferromagnetism of Ni-doped ZnO nanoparticles, J. Mater. Sci., 42 (2007) 6464–6468.
  54. Y. Wang, T. Liu, Q. Huang, C. Wu, D. Shan, Synthesis and their photocatalytic properties of Ni-doped ZnO hollow micro spheres, J. Mater. Res., 31 (2016) 2317–2328.
  55. P. Pascariu, I.V. Tudose, M. Suchea, E. Koudoumas, N. Fifere, A. Airinei, Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications, Appl. Surf. Sci., 448 (2018) 481–488.
  56. H. Liu, J. Yang, Z. Hua, Y. Zhang, L. Yang, L. Xiao, Z. Xie, The structure and magnetic properties of Cu-doped ZnO prepared by sol–gel method, Appl. Surf. Sci., 256 (2010) 4162–4165.
  57. E. Sherly, J.J. Vijaya, L.J. Kennedy, B. Sreedhar, NiO coupled ZnO nanoparticles: preparation, characterization and their UV-vis photocatalytic activities, J. Nanosci. Nanotechnol., 16 (2016) 9784–9793.
  58. Y. Mao, Y. Cheng, J. Wang, H. Yang, M. Li, J. Chen, M. Chao, Y. Tong, E. Liang, Amorphous NiO electrocatalyst over coated ZnO nanorod photoanodes for enhanced photoelectrochemical performance, New J. Chem., 40 (2016) 107–112.
  59. R. Elilarassi, G. Chandrasekaran, Synthesis, structural and optical characterization of Ni-doped ZnO nanoparticles, J. Mater. Sci.: Mater. Electron., 22 (2011) 751–756.
  60. K. Raja, P. Ramesh, D. Geetha, Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method, Spectrochim. Acta, Part A, 120 (2014) 19–24.
  61. K.G. Kanade, B.B. Kale, J.-O. Baeg, S.M. Lee, C.W. Lee, S.-J. Moon, H. Chang, Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation, Mater. Chem. Phys., 102 (2007) 98–104.
  62. A. Maleki, M. Safari, B. Shahmoradi, Y. Zandsalimi, H. Daraei, F. Gharibi, Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation, Environ. Sci. Pollut. Res., 22 (2015) 16875–16880.
  63. B. Shahmoradi, K. Namratha, K. Byrappa, K. Soga, S. Ananda, R. Somashekar, Enhancement of the photocatalytic activity of modified ZnO nanoparticles with manganese additive, Res. Chem. Intermed., 37 (2011) 329–340.
  64. B. Xue, Y. Zou, Uniform distribution of ZnO nanoparticles on the surface of grpahene and its enhanced photocatalytic performance, Appl. Surf. Sci., 440 (2018) 1123–1129.
  65. A. Jonidi-Jafari, M. Gholami, M. Farzadkia, A. Esrafili, M. Shirzad-Siboni, Application of Ni-doped ZnO nanorods for degradation of diazinon: Kinetics and by-products, Sep. Sci. Technol., 52 (2017) 2395–2406.
  66. A. Maleki, M. Safari, R. Rezaee, R.D.C. Soltani, B. Shahmoradi, Y. Zandsalimi, Photocatalytic degradation of humic substances in the presence of ZnO nanoparticles immobilized on glass plates under ultraviolet irradiation, Sep. Sci. Technol., 51 (2016) 2484–2489.
  67. M. Moradi, M. Haghighi, S. Allahyari, Precipitation dispersion of Ag–ZnO nanocatalyst over functionalized multi wall carbon nanotube used in degradation of Acid Orange from wastewater, Process Saf. Environ. Prot., 107 (2017) 414–427.
  68. M. Safari, A. Khataee, R.D.C. Soltani, R. Rezaee, Ultrasonically facilitated adsorption of an azo dye onto nanostructures obtained from cellulosic wastes of broom and cooler straw, J. Colloid Interface Sci., 522 (2018) 228–241.
  69. M. Ghalebizade, B. Ayati, Solar photoelectro catalytic degradation of Acid Orange 7 with ZnO/TiO2 nanocomposite coated on stainless steel electrode, Process Saf. Environ. Prot., 103 (2016) 192–202.
  70. C. Chen, C. Lu, Y. Chung, J. Jan, UV light induced photodegradation of malachite green on TiO2 nanoparticles, J. Hazard. Mater., 141 (2007) 520–528.
  71. B. Krishnakumar, B. Subash, M. Swaminathan, AgBr–ZnO–An efficient nano-photocatalyst for the mineralization of Acid Black 1 with UV light, Sep. Purif. Technol., 85 (2012) 35–44.
  72. R.D.C. Soltani, M. Safari, A. Maleki, H. Godini, M.H. Mahmoudian, M.A. Pordel, Application of nanocrystalline iranian diatomite in immobilized form for removal of a textile dye, J. Dispersion Sci. Technol., 37 (2016) 723–732.
  73. B. Shahmoradi, A. Maleki, K. Byrappa, Removal of Disperse Orange 25 using in situ surface-modified iron-doped TiO2 nanoparticles, Desal. Water Treat., 53 (2015) 3615–3622.
  74. K. Hayat, M. Gondal, M.M. Khaled, S. Ahmed, A.M. Shemsi, Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water, Appl. Catal., A, 393 (2011) 122–129.
  75. M. Mahalakshmi, B. Arabindoo, M. Palanichamy, V. Murugesan, Photocatalytic degradation of carbofuran using semiconductor oxides, J. Hazard. Mater., 143 (2007) 240–245.
  76. J. Wu, H. Zhang, J. Qiu, Degradation of acid orange 7 in aqueous solution by a novel electro/Fe2+/peroxydisulfate process, J. Hazard. Mater., 215 (2012) 138–145.
  77. B. Shahmoradi, M. Negahdary, A. Maleki, Hydrothermal synthesis of surface-modified, manganese-doped TiO2 nanoparticles for photodegradation of methylene blue, Environ. Eng. Sci., 29 (2012) 1032–1037.
  78. B. Shahmoradi, A. Maleki, K. Byrappa, Photocatalytic degradation of amaranth and brilliant blue FCF dyes using in situ modified tungsten doped TiO2 hybrid nanoparticles, Catal. Sci. Technol., 1 (2011) 1216–1223.
  79. H. Daraei, A. Maleki, A.H. Mahvi, Y. Zandsalimi, L. Alaei, F. Gharibi, Synthesis of ZnO nano-sono-catalyst for degradation of reactive dye focusing on energy consumption: operational parameters influence, modeling, and optimization, Desal. Water Treat., 52 (2014) 6745–6755.
  80. G. Li, J. Qu, X. Zhang, J. Ge, Electrochemically assisted photocatalytic degradation of Acid Orange 7 with β-PbO2 electrodes modified by TiO2, Water Res., 40 (2006) 213–220.