References

  1. Y. Ji, W. Qian, Y. Yu, Q. An, L. Liu, Y. Zhou, Recent developments in nanofiltration membranes based on nanomaterials, Chin. J. Chem. Eng., 25 (2017) 1639–1652.
  2. M.A. Abdel-Fatah, Nanofiltration systems and applications in wastewater treatment: Review article, Ain Shams Eng., in press (2018).
  3. A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley–Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination, 356 (2015) 226–254.
  4. R.J. Petersen, Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci., 83 (1993) 81–150.
  5. O. Labban, T.H. Chong, J.H.L. V, Design and modeling of novel low–pressure nanofiltration hollow fiber modules for water softening and desalination pretreatment, Desalination, 439 (2018) 58–72.
  6. C.S. Ong, W.J. Lau, A.F. Ismail, Treatment of dyeing solution by NF membrane for decolorization and salt reduction, Desal. Water Treat., 50 (2012) 245–253.
  7. D. Dolar, K. Košutić, D. Ašperger, Influence of adsorption of pharmaceuticals onto RO/NF membranes on their removal from water, Water Air Soil Poll., 224 (2012).
  8. V. Freger, S. Srebnik, Mathematical model of charge and density distributions in inter facial polymerization of thin films, J. Appl. Polym. Sci., 88 (2003) 1162–1169.
  9. d.V. Freger, Nanoscale Heterogeneity of polyamide membranes formed by inter facial polymerization, Langmuir, 19 (2003) 4791–4797.
  10. S. Bason, Y. Oren, V. Freger, Characterization of ion transport in thin films using electrochemical impedance spectroscopy II: examination of the polyamide layer of RO membranes, J. Membr. Sci., 302 (2007) 10–19.
  11. F.A. Pacheco, I. Pinnau, M. Reinhard, J.O. Leckie, Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques, J. Membr. Sci., 358 (2010) 51–59.
  12. Z. Wang, K. Xiao, X.–m. Wang, Role of coexistence of negative and positive membrane surface charges in electrostatic effect for salt rejection by nanofiltration, Desalination, 444 (2018) 75–83.
  13. H. Zhu, A. Szymczyk, B. Balannec, Influence of an inhomogeneous membrane charge density on the rejection of electrolytes by NF membranes entile article, Desal. Water Treat., 18 (2010) 182–186.
  14. H. Zhu, A. Szymczyk, B. Balannec, On the salt rejection properties of nanofiltration polyamide membranes formed by inter facial polymerization, J. Membr. Sci., 379 (2011) 215–223.
  15. A. Szymczyk, H. Zhu, B. Balannec, Ion rejection properties of nanopores with bipolar fixed charge distributions, J. Phys. Chem., B 114 (2010) 10143–10150.
  16. F.G. Donnan, Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical–chemical physiology, J. Membr. Sci., 100 (1995) 45–55.
  17. B. Balannec, A. Ghoufi, A. Szymczyk, Nanofiltration performance of conical and hourglass nanopores, J. Membr. Sci., 552 (2018) 336–340.
  18. S. Tseng, S.C. Lin, C.Y. Lin, J.P. Hsu, Influences of cone angle and surface charge density on the ion current rectification behavior of a conical nanopore, J. Phys. Chem. C., 120 (2016) 25620–25627.
  19. S. Bandini, D. Vezzani, Nanofiltration modeling: the role of dielectric exclusion in membrane characterization, Chem. Eng. Sci., 58 (2003) 3303–3326.
  20. A.E. Yaroshchuk, Dielectric exclusion of ions from membranes, Adv. Colloid Interf. Sci., 85 (2000) 193–230.
  21. A. Szymczyka, N. Fatin-Rouge, P. Fievet, C. Ramseyer, A. Vidonne, Identification of dielectric effects in nanofiltration of metallic salts, J. Membr. Sci., 287 (2007) 102–110.
  22. A. Szymczyk, P. Fievet, Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model, J. Membr. Sci., 252 (2005) 77–88.
  23. D.L. Oatley, L. Llenas, N.H.M. Aljohani, P.M. Williams, X. Martínez-Lladó, M. Rovira, J.d. Pablo, Investigation of the dielectric properties of nanofiltration membranes, Desalination, 315 (2013) 100–106.
  24. A. Yaroshchuk, M.L. Bruening, E. Zholkovskiy, Modelling nanofiltration of electrolyte solutions, Adv. Colloid Interface Sci., 268 (2019) 39–63.
  25. D.L. Oatley, L. Llenas, R. Perez, P.M. Williams, X. Martinez–Llado, M. Rovira, Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation, Adv. Colloid Interface Sci., 173 (2012) 1–11.
  26. D. Vezzani, S. Bandini, Donnan equilibrium and dielectric exclusion for of nanofiltration membranes, Desalination, 149 (2002) 477–483.
  27. W.R. Bowen, J.S. Welfoot, Modelling the performance of membrane nanofltration – critical assessment and model development, Chem. Eng. Sci., 57 (2002) 1121–1137.
  28. T. Tsuru, S.-i. Nakao, S. Kimura, Calculation of ion rejection by extended Nernst-Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions, J. Chem. Eng. J. pn., 24 (1991) 511–517.
  29. S. Déon, A. Escoda, P. Fievet, A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes, Chem. Eng. Sci., 66 (2011) 2823–2832.
  30. V. Silva, Á. Martín, F. Martínez, J. Malfeito, P. Prádanos, L. Palacio, A. Hernández, Electrical characterization of NF membranes. A modified model with charge variation along the pores, Chem. Eng. Sci., 66 (2011) 2898–2911.
  31. J.I. Calvo, A. Hernández, P. Prádanos, F. Tejerina, Charge adsorption and zeta potential in cyclopore membrane, J. Membr. Sci., 181 (1996) 399–412.
  32. V. Silva, M. Montalvillo, F.J. Carmona, L. Palacio, A. Hernández, P. Prádanos, Prediction of single salt rejection in nanofiltration membranes by independent measurements, Desalination, 382 (2016) 1–12.
  33. A. Szymczyk, H. Zhu, B. Balannec, Pressure-driven ionic transport through nanochannels with in homogenous charge distributions, Langmuir, 26 (2010) 1214–1220.
  34. A. Szymczyk, C. Labbez, P. Fievet, A. Vidonne, A. Foissy, J. Pagetti, Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes, Adv. Colloid Interface Sci., 103 (2003) 77–94.
  35. J. Fang, B. Deng, Rejection and modeling of arsenate by nanofiltration: Contributions of convection, diffusion and electro migration to arsenic transport, J. Membr. Sci., 453 (2014) 42–51.
  36. J. Garcia-Aleman, J.M. Dickson, Mathematical modeling of nanofiltration membranes with mixed electrolyte solutions, J. Membr. Sci., 235 (2004) 1–13.
  37. D.W. Nielsen, G. Jonsson, Bulk-phase criteria for negative ion rejection in nanofiltration of multicomponent salt solutions, Sep. Sci. Technol, 29 (1994) 1165–1182.
  38. S.S. Vasan, R.W. Field, Z. Cui, A Maxwell-Stefan-Gouy-Debye model of the concentration profile of a charged solute in the polarisation layer, Desalination, 192 (2006) 356–363.
  39. S.S. Vasan, C.D. Bain, R.W. Field, Z. Cui, A Maxwell-Stefan- Derjaguin-Grahame model of the concentration profile of a charged solute in the polarisation layer, Desalination, 200 (2006) 175–177.
  40. W.R. Bowen, A.W. Mohammad, A theoretical basis for specifying nanofiltration membranes – Dye/salt/water streams, Desalination, 117 (1998) 257–264.
  41. S.S. Wadekar, R.D. Vidic, Influence of active layer on separation potentials of nanofiltration membranes for inorganic ions, Environ. Sci. Technol., 51 (2017) 5658–5665.
  42. Y. Roy, D.M. Warsinger, J.H. Lienhard, Effect of temperature on ion transport in nanofiltration membranes: Diffusion, convection and electro migration, Desalination, 420 (2017) 241–257.
  43. W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of nanofiltration membranes for predictive purposes – use of salts, uncharged solutes and atomic force microscopy, J. Membr. Sci., 126 (1997) 91–105.
  44. J. Luo, Y. Wan, Effects of pH and salt on nanofiltration—a critical review, J. Membr. Sci., 438 (2013) 18–28.
  45. L.D. Nghiem, A.I. Schäfer, M. Elimelech, Removal of natural hormones by nanofiltration membranes: Measurement, modeling, and mechanisms, Environ. Sci. Technol., 38 (2004) 1888–1896.
  46. K.-L. Tung, Y.-C. Jean, D. Nanda, K.-R. Lee, W.-S. Hung, C.-H. Lo, J.-Y. Lai, Characterization of multilayer nanofiltration membranes using positron annihilation spectroscopy, J. Membr. Sci., 343 (2009) 147–156.
  47. S. Bandini, J. Drei, D. Vezzani, The role of pH and concentration on the ion rejection in polyamide nanofiltration membranes, J. Membr. Sci., 264 (2005) 65–74.
  48. S. Bandini, C. Mazzoni, Modelling the amphoteric behaviour of polyamide nanofiltration membranes, Desalination, 184 (2005) 327–336.
  49. P. Fievet, C. Labbez, A. Szymczyk, A. Vidonne, A. Foissy, J. Pagetti, Electrolyte transport through amphoteric nanofiltration membranes, Chem. Eng. Sci., 57 (2002) 2921–2931.
  50. P. Árki, C. Hecker, G. Tomandl, Y. Joseph, Streaming potential properties of ceramic nanofiltration membranes – Importance of surface charge on the ion rejection, Sep. Purif. Technol., 212 (2019) 660–669.
  51. D.-X. Wang, M. Su, Z.-Y. Yu, X.-L. Wang, M. Ando, T. Shintani, Separation performance of a nanofiltration membrane influenced by species and concentration of ions, Desalination, 175 (2005) 219–225.
  52. M. Teixeira, M. Rosa, M. Nystrom, The role of membrane charge on nanofiltration performance, J. Membr. Sci., 265 (2005) 160–166.