References

  1. S. Esplugas, J. Giménez, S. Contreras, E. Pascual, M. Rodrıǵ uez, Comparison of different advanced oxidation processes for phenol degradation, Water Res., 36 (2002) 1034–1042.
  2. G.S. Veeresh, P. Kumar, I. Mehrotra, Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review, Water Res., 39 (2005) 154–170.
  3. A. Hamitouche, Z. Bendjama, A. Amrane, F. Kaouah, D. Hamane, R. Ikkene, Biodegradation of P-cresol by mixed culture in batch reactor – effect of the three nitrogen sources used, Procedia. Eng., 33 (2012) 458–464. 4] C.M. Gómez, G. Del Angel, F. Tzompantzi, R. Gómez, L.M. Torres-Martínez, Photocatalytic degradation of p-cresol on Pt/Al2O3–TiO2 mixed oxides: Effect of oxidizing and reducing pre-treatments, J. Photochem. Photobiol. A Chem., 236 (2012) 21–25.
  4. S. Kumar, D. Arya, A. Malhotra, S. Kumar, B. Kumar, Biodegradation of dual phenolic substrates in simulated wastewater by Gliomastix indicus MTCC 3869, J. Environ. Chem. Eng., 1 (2013) 865–874.
  5. E. Xenofontos, A.-M. Tanase, I. Stoica, I. Vyrides, Newly isolated alkalophilic Advenella species bioaugmented in activated sludge for high p-cresol removal, N. Biotechnol., 33 (2016) 305–310.
  6. J. Huang, Treatment of phenol and p-cresol in aqueous solution by adsorption using a carbonylated hypercrosslinked polymeric adsorbent, J. Hazard. Mater., 168 (2009) 1028–1034.
  7. S.H. Kow, M.R. Fahmi, C. Zulzikrami, A. Abidin, S.-A. Ong, Oxidation of p-cresol by ozonation, Sains Malaysiana., 47 (2018) 1085–1091.
  8. T. Zhang, L. Cheng, L. Ma, F. Meng, R.G. Arnold, A.E. Sáez, Modeling the oxidation of phenolic compounds by hydrogen peroxide photolysis, Chemosphere, 161 (2016) 349–357.
  9. S. Karthikeyan, V.K. Gupta, R. Boopathy, A. Titus, G. Sekaran, A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: Kinetic and spectroscopic studies, J. Mol. Liq., 173 (2012) 153–163.
  10. V. Kavitha, K. Palanivelu, Destruction of cresols by Fenton oxidation process, Water Res., 39 (2005) 3062–3072.
  11. A. Zhang, N. Wang, J. Zhou, P. Jiang, G. Liu, Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash, J. Hazard. Mater., 201–202 (2012) 68–73.
  12. M.E.M. Ali, T.A. Gad-Allah, M.I. Badawy, Heterogeneous fenton process using steel industry wastes for methyl orange degradation, Appl. Water Sci., 3 (2013) 263–270.
  13. P. Bautista, A.F. Mohedano, J.A. Casas, J.A. Zazo, J.J. Rodriguez, Highly stable Fe/γ-Al2O3 catalyst for catalytic wet peroxide oxidation, J. Chem. Technol. Biotechnol., 86 (2011) 497–504.
  14. J.G. Carriazo, E. Guelou, J. Barrault, J.M. Tatibouët, S. Moreno, Catalytic wet peroxide oxidation of phenol over Al–Cu or Al– Fe modified clays, Appl. Clay Sci., 22 (2003) 303–308.
  15. A. Rey, M. Faraldos, J.A. Casas, J.A. Zazo, A. Bahamonde, J.J. Rodríguez, Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: Influence of iron precursor and activated carbon surface, Appl. Catal. B Environ., 86 (2009) 69–77.
  16. A. Rey, A.B. Hungria, C.J. Duran-Valle, M. Faraldos, A. Bahamonde, J.A. Casas, J.J. Rodriguez, On the optimization of activated carbon-supported iron catalysts in catalytic wet peroxide oxidation process, Appl. Catal. B Environ., 181 (2016) 249–259.
  17. Y. Wang, H. Zhao, M. Li, J. Fan, G. Zhao, Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid, Appl. Catal. B Environ., 147 (2014) 534–545.
  18. Q. Wu, X. Hu, P.L. Yue, X.S. Zhao, G.Q. Lu, Copper/MCM-41 as catalyst for the wet oxidation of phenol, Appl. Catal. B Environ., 32 (2001) 151–156.
  19. Y. Yan, S. Jiang, H. Zhang, Efficient catalytic wet peroxide oxidation of phenol over Fe-ZSM-5 catalyst in a fixed bed reactor, Sep. Purif. Technol., 133 (2014) 365–374.
  20. L. Zhang, Y. Nie, C. Hu, J. Qu, Enhanced Fenton degradation of Rhodamine B over nanoscaled Cu-doped LaTiO3 perovskite, Appl. Catal. B Environ., 125 (2012) 418–424.
  21. W. Chansiriwat, D. Tanangteerapong, K. Wantala, Synthesis of zeolite from coal fly ash by hydrothermal method without adding alumina and silica sources: Effect of aging temperature and time, Sains Malaysiana., 45 (2016).
  22. K. Wantala, C. Khamjumphol, N. Thananukool, A. Neramittagapong, Degradation of Reactive Red 3 by heterogeneous Fenton-like process over iron-containing RH-MCM-41 assisted by UV irradiation, Desal. Water Treat., 54 (2015) 699–706.
  23. R.M. Liou, S.-H. Chen, CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol, J. Hazard. Mater., 172 (2009) 498–506.
  24. C. di Luca, P. Massa, R. Fenoglio, F.M. Cabello, Improved Fe2O3/Al2O3 as heterogeneous Fenton catalysts for the oxidation of phenol solutions in a continuous reactor, J. Chem. Technol. Biotechnol., 89 (2014) 1121–1128.
  25. H. He, Y. Liu, D. Wu, X. Guan, Y. Zhang, Ozonation of dimethyl phthalate catalyzed by highly active CuxO-Fe3O4 nanoparticles prepared with zero-valent iron as the innovative precursor, Environ. Pollut., 227 (2017) 73–82.
  26. F. Qi, W. Chu, B. Xu, Comparison of phenacetin degradation in aqueous solutions by catalytic ozonation with CuFe2O4 and its precursor: Surface properties, intermediates and reaction mechanisms, Chem. Eng. J., 284 (2016) 28–36.
  27. F. Qi, W. Chu, B. Xu, Ozonation of phenacetin in associated with a magnetic catalyst CuFe2O4: The reaction and transformation, Chem. Eng. J., 262 (2015) 552–562.
  28. X. Liu, Z. Zhou, G. Jing, J. Fang, Catalytic ozonation of Acid Red B in aqueous solution over a Fe–Cu–O catalyst, Sep. Purif. Technol., 115 (2013) 129–135.
  29. M. Xia, M. Long, Y. Yang, C. Chen, W. Cai, B. Zhou, A highly active bimetallic oxides catalyst supported on Al-containing MCM-41 for Fenton oxidation of phenol solution, Appl. Catal. B Environ., 110 (2011) 118–125.
  30. X. Zhang, Y. Ding, H. Tang, X. Han, L. Zhu, N. Wang, Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst: Efficiency, stability and mechanism, Chem. Eng. J., 236 (2014) 251–262.
  31. Y. Ding, L. Zhu, N. Wang, H. Tang, Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate, Appl. Catal. B Environ., 129 (2013) 153–162.
  32. S.P. Pavunny, A. Kumar, R.S. Katiyar, Raman spectroscopy and field emission characterization of delafossite CuFeO2, J. Appl. Phys., 107 (2010) 013522.
  33. M.D. De luna, L.J.M. Millanar, A. Yodsa-Nga, K. Wantala, Gas phase catalytic oxidation of VOCS using hydrothermally synthesized nest-like K-OMS 2 catalyst, Sains Malaysiana., 46 (2017) 275–283.
  34. S. Zha, Y. Cheng, Y. Gao, Z. Chen, M. Megharaj, R. Naidu, Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin, Chem. Eng. J., 255 (2014) 141–148.
  35. R. Idel-aouad, M. Valiente, A. Yaacoubi, B. Tanouti, M. López-Mesas, Rapid decolourization and mineralization of the azo dye C.I. Acid Red 14 by heterogeneous Fenton reaction, J. Hazard. Mater., 186 (2011) 745–750.
  36. M. of Industry, Standards for effluent of factory wastewater, Ministry of Industry annoucement, 2018. http://www.diw.go.th/hawk/news/11.PDF (accessed September 26, 2018).
  37. Y. Abdollahi, A.H. Abdullah, Z. Zainal, N.A. Yusof, Photocatalytic degradation of p-cresol by zinc oxide under UV irradiation, Int. J. Mol. Sci., 13 (2012) 302–315.
  38. R. Khunphonoi, N. Grisdanurak, Mechanism pathway and kinetics of p-cresol photocatalytic degradation over titania nanorods under UV–visible irradiation, Chem. Eng. J., 296 (2016) 420–427.
  39. A. Han, J. Sun, X. Lin, C.-H. Yuan, G.K. Chuah, S. Jaenicke, Influence of facets and heterojunctions in photoactive bismuth oxyiodide, RSC Adv., 5 (2015) 88298–88305.