References

  1. N. Stamatis, M. Antonopoulou, I. Konstantinou, Photocatalytic degradation kinetics and mechanisms of fungicide tebuconazole in aqueous TiO2 suspensions, Catal. Today, 252 (2015) 93–99.
  2. K.P. Mishra, P.R. Gogate, Intensification of sonophotocatalytic degradation of p-nitrophenol at pilot scale capacity, Ultrason. Sonochem., 18 (2011) 739–744.
  3. M. Carballa, F. Omil, J.M. Lema, M.a. Llompart, C. Garcıá - Jares, I. Rodrıǵ uez, M. Gomez, T. Ternes, Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant, Water Res., 38 (2004) 2918–2926.
  4. M. Rabiet, A. Togola, F. Brissaud, J.-L. Seidel, H. Budzinski, F. Elbaz-Poulichet, Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean catchment, Environ. Sci. Tech., 40 (2006) 5282–5288.
  5. A. Nikolaou, S. Meric, D. Fatta, Occurrence patterns of pharmaceuticals in water and wastewater environments, Anal. Bioanal. Chem., 387 (2007) 1225–1234.
  6. X.-S. Miao, F. Bishay, M. Chen, C.D. Metcalfe, Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada, Environ. Sci. Tech., 38 (2004) 3533–3541.
  7. D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance, Environ. Sci. Tech., 36 (2002) 1202–1211.
  8. M.J. Benotti, R.A. Trenholm, B.J. Vanderford, J.C. Holady, B.D. Stanford, S.A. Snyder, Pharmaceuticals and endocrine disrupting compounds in US drinking water, Environ. Sci. Tech., 43 (2008) 597–603.
  9. O. Cardoso, J.-M. Porcher, W. Sanchez, Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge, Chemosphere, 115 (2014) 20–30.
  10. P.E. Stackelberg, E.T. Furlong, M.T. Meyer, S.D. Zaugg, A.K. Henderson, D.B. Reissman, Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant, Sci. Total Environ., 329 (2004) 99–113.
  11. K. Ikehata, N.J. Naghashkar, M.G. El-Din, Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review, Ozone: Sci. Eng., 28 (2006) 353–414.
  12. L. Yang, L.E. Yu, M.B. Ray, Photo catalytic oxidation of paracetamol: dominant reactants, intermediates, and reaction mechanisms, Environ. Sci. Tech., 43 (2008) 460–465.
  13. M. Jamshidi, M. Ghaedi, K. Dashtian, S. Hajati, A. Bazrafshan, Ultrasound-assisted removal of Al3+ ions and Alizarin red S by activated carbon engrafted with Ag nanoparticles: central composite design and genetic algorithm optimization, RSC Adv., 5 (2015) 59522–59532.
  14. M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, V. Gupta, Modeling of competitive ultrasonic assisted removal of the dyes–Methylene blue and Safranin-O using Fe3O4 nanoparticles, Chem. Eng. J., 268 (2015) 28–37.
  15. F.N. Azad, M. Ghaedi, K. Dashtian, M. Montazerozohori, S. Hajati, E. Alipanahpour, Preparation and characterization of MWCNTs functionalized by N-(3-nitrobenzylidene)-N'-trimethoxysilylpropyl-ethane-1, 2-diamine for the removal of aluminum (III) ions via complexation with eriochrome cyanine R: spectrophotometric detection and optimization, RSC Adv., 5 (2015) 61060–61069.
  16. N. Kaur, S. Kaur, V. Singh, Preparation, characterization and photocatalytic degradation kinetics of Reactive Red dye 198 using N, Fe codoped TiO2 nanoparticles under visible light, Desal. Water Treat., 57 (2016) 9237–9246.
  17. C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang, G. Guo, Photocatalytic organic pollutants degradation in metal-organic frameworks, Energ. Environ. Sci., 7 (2014) 2831–2867.
  18. Y. Wu, M. Xing, B. Tian, J. Zhang, F. Chen, Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light, Chem. Eng. J., 162 (2010) 710–717.
  19. M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, M. Matsuoka, The preparation and characterization of highly efficient titanium oxide-based photo functional materials, Annu. Rev. Mater. Res., 35 (2005) 1–27.
  20. R. Mohamed, UV-assisted photocatalytic synthesis of TiO2-reduced graphene oxide with enhanced photo catalytic activity in decomposition of sarin in gas phase, Desal. Water Treat., 50 (2012) 147–156.
  21. R. Mohamed, I. Mkhalid, M.A. Salam, M. Barakat, Zeolite Y from rice husk ash encapsulated with Ag-TiO2: characterization and applications for photo catalytic degradation catalysts, Desal. Water Treat., 51 (2013) 7562–7569.
  22. C. Dette, M.A. Pérez-Osorio, C.S. Kley, P. Punke, C.E. Patrick, P. Jacobson, F. Giustino, S.J. Jung, K. Kern, TiO2 anatase with a band gap in the visible region, Nano Lett., 14 (2014) 6533–6538.
  23. M.V. Dozzi, E. Selli, Doping TiO2 with p-block elements: Effects on photocatalytic activity, J. Photochem. Photobiol. C., 14 (2013) 13–28.
  24. S. Bangkedphol, H. Keenan, C. Davidson, A. Sakultantimetha, W. Sirisaksoontorn, A. Songsasen, Enhancement of tributyltin degradation under natural light by N-doped TiO2 photocatalyst, J. Hazard. Mater., 184 (2010) 533–537.
  25. G. Zhang, Y.C. Zhang, M. Nadagouda, C. Han, K. O’Shea, S.M. El-Sheikh, A.A. Ismail, D.D. Dionysiou, Visible light-sensitized S, N and C co-doped polymorphic TiO2 for photocatalytic destruction of micro cystin-LR, Appl. Catal., B. Environ., 144 (2014) 614–621.
  26. V. Gombac, L. De Rogatis, A. Gasparotto, G. Vicario, T. Montini, D. Barreca, G. Balducci, P. Fornasiero, E. Tondello, M. Graziani, TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications, Chem. Phys., 339 (2007) 111–123.
  27. X. Ding, X. Song, P. Li, Z. Ai, L. Zhang, Efficient visible light driven photocatalytic removal of NO with aerosol flow synthesized B, N-codoped TiO2 hollow spheres, J. Hazard. Mater., 190 (2011) 604–612.
  28. R. Pol, M. Guerrero, E. García-Lecina, A. Altube, E. Rossinyol, S. Garroni, M.D. Baró, J. Pons, J. Sort, E. Pellicer, Ni-, Pt-and (Ni/Pt)-doped TiO2 nanophotocatalysts: A smart approach for sustainable degradation of Rhodamine B dye, Appl. Catal., B. Environ., 181 (2016) 270–278.
  29. H. Sun, G. Zhou, S. Liu, H.M. Ang, M.O. Tadé, S. Wang, Visible light responsive titania photo catalysts codoped by nitrogen and metal (Fe, Ni, Ag, or Pt) for remediation of aqueous pollutants, Chem. Eng. J., 231 (2013) 18–25.
  30. Y. Xie, Y. Li, X. Zhao, Low-temperature preparation and visible-light-induced catalytic activity of anatase F–N-codoped TiO2, J. Mol. Catal. A: Chem., 277 (2007) 119–126.
  31. H. Khalilian, M. Behpour, V. Atouf, S.N. Hosseini, Immobilization of S, N-codoped TiO2 nanoparticles on glass beads for photocatalytic degradation of methyl orange by fixed bed photoreactor under visible and sunlight irradiation, Sol. Energy, 112 (2015) 239–245.
  32. N. Yao, C. Wu, L. Jia, S. Han, B. Chi, J. Pu, L. Jian, Simple synthesis and characterization of mesoporous (N, S)-co-doped TiO2 with enhanced visible-light photocatalytic activity, Ceram. Int., 38 (2012) 1671–1675.
  33. M. Nasirian, Y. Lin, C. Bustillo-Lecompte, M. Mehrvar, Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: A review, Int. J. Environ. Sci. Tech., 15 (2018) 2009–2032.
  34. J. Yu, M. Zhou, B. Cheng, X. Zhao, Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO2 powders, J. Mol. Catal. A: Chem., 246 (2006) 176–184.
  35. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chem. Rev., 95 (1995) 735–758.
  36. W. Chang, L. Yan, B. Liu, R. Sun, Photocatalyic activity of double pore structure TiO2/SiO2 monoliths, Ceram. Int., 43 (2017) 5881–5886.
  37. C. Anderson, A.J. Bard, An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis, J. Phys. Chem., 99 (1995) 9882–9885.
  38. S. Islam, R.A. Rahman, Z. Othaman, S. Riaz, M. Saeed, S. Naseem, Preparation and characterization of crack-free sol-gel based SiO2–TiO2 hybrid nanoparticle film, J. Sol-Gel Sci. Technol., 68 (2013) 162–168.
  39. Y. Wang , Z. Xing, Z. Li, X. Wu, G. Wang, W. Zhou, Facile synthesis of high-thermostably ordered mesoporous TiO2/SiO2 nanocomposites: An effective bifunctional candidate for removing arsenic contaminations., J. Colloid Interface Sci., 485 (2017) 32–38.
  40. P.M. Álvarez, J. Jaramillo, F. Lopez-Pinero, P.K. Plucinski, Preparation and characterization of magnetic TiO2 nanoparticles and their utilization for the degradation of emerging pollutants in water, Appl. Cat. B: Env., 100 (2010) 338–345.
  41. T.A. Gad-Allah, S. Kato, S. Satokawa, T. Kojima, Treatment of synthetic dyes wastewater utilizing a magnetically separable photo catalyst (TiO2/SiO2/Fe3O4): Parametric and kinetic studies, Desalination, 244 (2009) 1–11.
  42. M. Behpour, V. Atouf, Study of the photo catalytic activity of nanocrystalline S, N-codoped TiO2 thin films and powders under visible and sun light irradiation, Appl. Surf. Sci., 258 (2012) 6595–6601.
  43. E.E. Kahveci, I. Taymaz, Experimental investigation on water and heat management in a PEM fuel cell using response surface methodology, Int. J. Hydro. Energ., 39 (2014) 10655–10663.
  44. J.-K. Im, I.-H. Cho, S.-K. Kim, K.-D. Zoh, Optimization of carbamazepine removal in O3/UV/H2O2 system using a response surface methodology with central composite design, Desalination, 285 (2012) 306–314.
  45. M. Jamshidi, M. Ghaedi, K. Dashtian, S. Hajati, New ion-imprinted polymer-functionalized mesoporous SBA-15 for selective separation and preconcentration of Cr (III) ions: modeling and optimization, RSC Adv., 5 (2015) 105789–105799.
  46. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S. Dunlop, J.W. Hamilton, J.A. Byrne, K. O’shea, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Env., 125 (2012) 331–349.
  47. M. Hamadanian, A. Reisi-Vanani, M. Behpour, A. Esmaeily, Synthesis and characterization of Fe, S-co-doped TiO2 nanoparticles: Application in degradation of organic water pollutants, Desalination, 281 (2011) 319–324.
  48. R. Mohamed, D. McKinney, W. Sigmund, Enhanced nanocatalysts, Materials Science and Engineering: R: Reports, 73 (2012) 1–13.
  49. S. Luo, Y. Xiao, L. Yang, C. Liu, F. Su, Y. Li, Q. Cai, G. Zeng, Simultaneous detoxification of hexavalent chromium and acid orange 7 by a novel Au/TiO2 heterojunction composite nanotube arrays, Sep. Purif. Technol., 79 (2011) 85–91.
  50. E.C. Onyiriuka, Aluminium, titanium boride, and nitride films sputter deposited from multicomponent alloy targets studied by XPS, Appl. Spectrosc., 47 (1993) 35–37.
  51. J. Lv, T. Sheng, L.L. Su, G.Q. Xu, D.M. Wang, Z.X. Zheng, Y.C. Wu, N, S co-doped-TiO2/fly ash beads composite material and visible light photocatalytic activity, Appl. Surf. Sci., 284 (2013) 229–234.
  52. J. Bu, J. Fang, F.C. Shi, Z.Q. Jiang, W.X. Huang, Photo catalytic activity of N-doped TiO2 photocatalysts prepared from the molecular precursor (NH4)2TiO(C2O4)2, Chin. J. Chem. Phys., 23 (2010) 95–101.
  53. S. Petrović, S. Stojadinović, L. Rožić, N. Radić, B. Grbić, R. Vasilić, Process modelling and analysis of plasma electrolytic oxidation of titanium for TiO2/WO3 thin film photocatalysts by response surface methodology, Surf. Coat. Technol., 269 (2015) 250–257.
  54. J.-M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today, 53 (1999) 115–129.
  55. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal. B: Env., 49 (2004) 1–14.
  56. C. Burda, Y.B. Lou, X.B. Chen, A.C.S. Samia, J. Stout, J.L. Gole, Enhanced nitrogen doping in TiO2 nanoparticles, Nano Lett., 3 (2003) 1049–1051.
  57. T. Umebayashi, T. Yamaki, S. Tanala, K. Asai, Visible light-induced degradation of methylene blue on S-doped TiO2, Chem. Lett., 1 (2003) 330–331.
  58. P.S. Kumar, S. Karuthapandian, M. Umadevi, A. Elangovan, V. Muthuraj, Light induced synthesis of Sr/CdSe nanocomposite for the highly synergistic photodegradation of methylene blue dye solution, Mater. Focus, 5 (2016) 128–136.
  59. P.S. Kumar, S.L. Prabavathi, P. Indurani, S. Karuthapandian, V. Muthuraj, Light assisted synthesis of hierarchically structured Cu/CdS nanorods with superior photocatalytic activity, stability and photocatalytic mechanism, Sep. Purif. Technol., 172 (2017) 192–201.
  60. L. Ye, J. Liu, C. Gong, L. Tian, T. Peng, L. Zan, Two different roles of metallic Ag on Ag/AgX/BiOX (X= Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge, Acs Catal., 2 (2012) 1677–1683.
  61. T. An, J. An, H. Yang, G. Li, H. Feng, X. Nie, Photocatalytic degradation kinetics and mechanism of anti virus drug-lamivudine in TiO2 dispersion, J. Hazard. Mater., 197 (2011) 229– 236.
  62. M. Boxwell, The solar electricity handbook-2017 Edition: A Simple, Practical Guide to Solar Energy–Designing and Installing Solar Photovoltaic Systems, Green Stream Publishing, 2017.