References

  1. P.R. González, G.I. Fernández, M.M. Arroyo, D.J.A. Rodríguez, P.E. Camacho, P. Montesinos, Multi platform application for precision irrigation scheduling in strawberries, Agric. Water Manage., 183 (2017) 194–201.
  2. A.A. Anwar, W. Ahmad, M.T. Bhatti, Z.U. Haq, The potential of precision surface irrigation in the indus basin irrigation system, Irrigation Sci., 34 (2016) 379–396.
  3. I. Kisekka, T. Oker, G. Nguyen, J. Aguilar, D. Rogers, Revisiting precision mobile drip irrigation under limited water, Irrig. Sci., 35 (2017) 483–500.
  4. G. Egea, E.F. José, F. Alcon, Financial assessment of adopting irrigation technology for plant-based regulated deficit irrigation scheduling in super high-density olive orchards, Agric. Water Manage., 187 (2017) 47–56.
  5. L. Bai, J. Cai, Y. Liu, H. Chen, B. Zhang, L. Huang, Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of yellow river basin, Agric. Water Manage., 188 (2017) 1–11.
  6. Q. Dong, Y.Z. Yang, T.B. Zhang, L.F. Zhou, J.Q. He, H.W. Chau, Y.F. Zou, H. Feng, Impacts of ridge with plastic mulch-furrow irrigation on soil salinity, spring maize yield and water use efficiency in an arid saline area, Agric. Water Manage., 201 (2017) 268–277.
  7. S. Kumar, M. Imtiyaz, A. Kumar, Studying the feasibility of using micro-irrigation systems for vegetable production in a canal command area, Irrig. Drainage, 58 (2010) 86–95.
  8. J. Xue, L. Ren, Assessing water productivity in the hetao irrigation district in inner mongolia by an agro-hydrological model, Irrig. Sci., 35 (2017) 257–382.
  9. Y.B. Wang, D. Liu, X.C. Cao, Z.Y. Yang, J.F. Song, D.Y. Chen, S.K. Sun, Agricultural water rights trading and virtual water export compensation coupling model: a case study of an irrigation district in china, Agric. Water Manage., 180 (2017) 99–106.
  10. X.Y. Gao, Y.N. Bai, Z.L. Huo, X. Xu, G.H. Huang, Y.H. Xia, T.S. Steenhuis, Deficit irrigation enhances contribution of shallow groundwater to crop water consumption in arid area, Agric. Water Manage., 185 (2017) 116–125.
  11. Z. Zhang, H. Guo, W. Zhao, S. Liu, Y. Cao, Y. Jia, Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao basin, Inner Mongolia, China, Hydrogeology J., 26 (2018) 1–14.
  12. J. Vos, L. Vincent, Volumetric water control in a large-scale open canal irrigation system with many smallholders: the case of chancay-lambayeque in Peru, Agric. Water Manage., 98 (2011) 710–714.
  13. D. Delgoda, H. Malano, M.N. Halgamuge, S.K. Saleem, Novel generic optimization method for irrigation scheduling under multiple objectives and multiple hierarchical layers in a canal network, Adv. Water Resour., (2017) 105.
  14. D. Stroppiana, P. Villa, G. Sona, G. Ronchetti, G. Candiani, M. Pepe, L. Busetto, M. Migliazzi, M. Boschetti, Early season weed mapping in rice crops using multi–spectral UAV data, Int. J. Remote Sensing, 1 (2018) 1–21.
  15. R. Bhola, N.H. Krishna, K.N. Ramesh, J. Senthilnath, G. Anand, Detection of the power lines in UAV remote sensed images using spectral-spatial methods, J. Environ. Manage., 206 (2018) 1233.
  16. F. Li, W. Yang, X. Liu, G. Sun, J. Liu, Using high-resolution UAV-borne thermal infrared imagery to detect coal fires in Majiliang mine, Datong coalfield, northern China, Remote Sensing Lett., 9 (2018) 71–80.
  17. P. Surový, R.N. Almeida, D. Panagiotidis, Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems, Int. J. Remote Sensing, 1 (2018) 1–15.
  18. S.F.D. Gennaro, A. Matese, B. Gioli, P. Toscano, A. Zaldei, A. Palliotti, L. Genesio, Multi-sensor approach to assess vineyard thermal dynamics combining high-resolution unmanned aerial vehicle (UAV) remote sensing and wireless sensor network (WSN) proximal sensing, Scientia Horticulturae, 221 (2017) 83–87.
  19. J. Gago, C. Douthe, R.E. Coopman, P.P. Gallego, M. Ribas-Carbo, J. Flexas, J.M. Escalona, H. Medrano, UAVs challenge to assess water stress for sustainable agriculture, Agric. Water Manage., 153 (2015) 9–19.
  20. D.J. Mulla, Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps, Biosyst. Eng., 114 (2013) 358–371.
  21. N. Bagheri, Development of a high-resolution aerial remote sensing system for precision agriculture, Int. J. Remote Sensing, 37 (2016) 1–13.
  22. J.F. Brown, M.S. Pervez, Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture, Agric. Syst., 127 (2014) 28–40.
  23. W. Su, C. Zhang, J.Y. Yang, H.G. Wu, L. Deng, W.H. Ou, Y. Anzhi, M.J. Chen, Analysis of wavelet packet and statistical textures for object-oriented classification of forest-agriculture ecotones using SPOT 5 imagery, Int. J. Remote Sensing, 33 (2012) 23.
  24. B.R. Nikam, F. Ibragimov, A. Chouksey, V. Garg, S.P. Aggarwal, Retrieval of land surface temperature from Landsat 8 tirs for the command area of Mula irrigation project, Environ. Earth Sci., 75 (2016) 1169.
  25. Y. Huang, K.N. Reddy, R.S. Fletcher, D. Pennington, UAV low-altitude remote sensing for precision weed management, Weed Technol., 32 (2018) 1–5.
  26. H. Xiang, L. Tian, Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform, Biosyst. Eng., 108 (2011) 104–113.
  27. M. Zhang, Low-level feature extraction for edge detection using genetic programming, IEEE Trans. Cybernetics, 44 (2017) 1459–1472.
  28. H. Yu, W. Yang, A fast feature extraction and matching algorithm for unmanned aerial vehicle images, J. Electron. Info. Technol., 38 (2016) 509–516.
  29. D. Liu, G. Hua, P. Viola, T. Chen, Integrated feature selection and higher-order spatial feature extraction for object categorization, Proc. IEEE Conference on Computer Vision and Pattern Recognition, 1 (2018) 1–8.
  30. Q. Wu, W. Diao, F. Dou, X. Sun, X. Zheng, K. Fu, Shape-based object extraction in high-resolution remote-sensing images using deep Boltzmann machine, Int. J. Remote Sensing, 37 (2016) 11.
  31. G. Gao, L. Zhou, Y. Li, A new change-detection method in high-resolution remote sensing images based on a conditional random field model, Int. J. Remote Sensing, 37 (2016) 17.
  32. S. Qiu, G. Wen, Z. Deng, J. Liu, Y. Fan, Accurate non-maximum suppression for object detection in high-resolution remote sensing images, Remote Sensing Lett., 37 (2016) 17.
  33. K. Parvathi, B.S.P. Rao, T.V. Rao, K.M. Reddy, Feature extraction from satellite images of hilly terrains using wavelets and watersheds, Int. J. Remote Sensing, 31 (2010) 12.
  34. L.J. Yang, Z. Tian, W. Zhao, A new affine invariant feature extraction method for sar image registration, Int. J. Remote Sensing, 35 (2014) 7219–7229.
  35. J. Li, Q. Hu, M. Ai, Unsupervised road extraction via a Gaussian mixture model with object-based features, Int. J. Remote Sensing, 39 (2018) 2421–2440.
  36. E. Basaeed, H. Bhaskar, P. Hill, M. Al-Mualla, D.A. Bull, Supervised hierarchical segmentation of remote-sensing images using a committee of multi-scale convolutional neural networks, Int. J. Remote Sensing, 37 (2016) 21.
  37. J. Kang, L. Wang, F. Chen, Z. Niu, Identifying tree crown areas in undulating eucalyptus plantations using jseg multi-scale segmentation and unmanned aerial vehicle near-infrared imagery, Int. J. Remote Sensing, 38 (2017) 17.
  38. S. Chen, X. Li, L. Zhao, H. Yang, Medium-low resolution multi source remote sensing image registration based on sift and robust regional mutual information, Int. J. Remote Sensing, 39 (2018) 3215–3242.
  39. J. Liu, Scale computation on high spatial resolution remotely sensed imagery multi-scale segmentation, Int. J. Remote Sensing, 38 (2017) 5186–5214.
  40. S.E. Jozdani, M. Momeni, B.A. Johnson, M. Sattari, A regression modelling approach for optimizing segmentation scale parameters to extract buildings of different sizes, Int. J. Remote Sensing, 39 (2018) 684–703.
  41. F. Meng, X. Yang, C. Zhou, Z. Li, B. Liu, Multi scale adaptive reconstruction of missing information for remotely sensed data using sparse representation, Remote Sensing Lett., 9 (2018) 458–467.
  42. Z. Wang, C. Lu, X. Yang, Exponentially sampling scale parameters for the efficient segmentation of remote-sensing images, Int. J. Remote Sensing, 39 (2018) 1628–1654.
  43. A. Hadavand, M. Saadatseresht, S. Homayouni, Segmentation parameter selection for object-based land-cover mapping from ultra high resolution spectral and elevation data, Int. J. Remote Sensing, 38 (2017) 3586–3607.
  44. Y. Xu, W. Yao, L. Hoegner, U. Stilla, Segmentation of building roofs from airborne lidar point clouds using robust voxel-based region growing, Remote Sensing Lett., 8 (2017) 1062–1071.