References
- J.J. Rook, Formation of haloforms during chlorination of natural
waters, Water Treat. Exam, 23 (1974) 234–243.
- C. Cortés, R. Marcos, Genotoxicity of disinfection byproducts
and disinfected waters: a review of recent literature, Mutat. Res.
Genet. Toxicol. Environ. Mutagen., 831 (2018) 1–12.
- C. Legay, M.J. Rodriguez, J.B. Sérodes, P. Levallois, Estimation
of chlorination by-products presence in drinking water in
epidemiological studies on adverse reproductive outcomes:
a review, Sci. Total Environ., 408 (2010) 456–472.
- M. Yang, X. Zhang, Current trends in the analysis and
identification of emerging disinfection byproducts, Trends
Environ. Anal. Chem., 10 (2016) 24–34.
- J. On, H. Pyo, S.W. Myung, Effective and sensitive determination
of eleven disinfection byproducts in drinking water by
DLLME and GC-MS, Sci. Total Environ., 639 (2018) 208–216.
- S.D. Richardson, M.J. Plewa, E.D. Wagner, R. Schoeny,
D.M. Demarini, Occurrence, genotoxicity, and carcinogenicity
of regulated and emerging disinfection by-products in drinking
water: a review and roadmap for research, Mutat. Res., 636 (2007)
178–242.
- EPA (Environmental Protection Agency), National Primary
Drinking Water Regulations: Stage 2 Disinfectants and Disinfection
Byproducts Rule, Federal Register, 71 (2006) 387–493.
- World Health Organization (WHO), Guidelines for Drinking-
Water Quality, 4th ed., Recommendations, Geneva, Switzerland,
2011.
- Ministry of Health of the People’s Republic of China, Standards
for Drinking Water Quality (GB 5749-2006).
- European Union Council Directive, 98/83/EC of 3 November
1998 Relative to the Quality of Drinking Water, Official Journal
of the European Communities, 1998.
- W.H. Chu, N.Y. Gao, Y. Deng, S.W. Krasner, Precursors of
dichloroacetamide, an emerging nitrogenous DBP formed
during chlorination or chloramination, Environ. Sci. Technol.,
44 (2010) 3908–3912.
- W.H. Chu, N.Y. Gao, Y. Deng, M.R. Templeton, D.Q. Yin,
Formation of nitrogenous disinfection by-products from prechloramination,
Chemosphere, 85 (2011) 1187–1191.
- L. Yang, D. Kim, H. Uzun, T. Karanfil, J. Hur, Assessing
trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA)
formation potentials in drinking water treatment plants
using fluorescence spectroscopy and parallel factor analysis,
Chemosphere, 121 (2015) 84–91.
- A.D. Shah, W.A. Mitch, Halonitroalkanes, halonitriles,
haloamides, and N-nitrosamines: a critical review of nitrogenous
disinfection byproduct formation pathways, Environ.
Sci. Technol., 46 (2011) 119–131.
- S.D. Richardson, A.D. Thruston Jr., S.W. Krasner, H.S. Weinberg,
R.J. Miltner, K.M. Schenck, M.G. Narotsky, A.B. McKague,
J.E. Simmons, Integrated disinfection by-products mixtures
research: comprehensive characterization of water concentrates
prepared from chlorinated and ozonated/postchlorinated
drinking water, J. Toxicol. Environ. Health, 71 (2008) 1165–1186.
- I. Freuze, S. Brosillon, D. Herman, A. Laplanche, C. Démocrate,
J. Cavard, Odorous products of the chlorination of phenylalanine
in water: formation, evolution, and quantification,
Environ. Sci. Technol., 38 (2004) 4134–4139.
- I. Freuze, S. Brosillon, A. Laplanche, D. Tozza, J. Cavard,
Effect of chlorination on the formation of odorous disinfection
by-products, Water Res., 39 (2005) 2636–2642.
- B. Conyers, F.E. Scully Jr., N-chloroaldimines. 3. Chlorination
of phenylalanine in model solutions and in a wastewater,
Environ. Sci. Technol., 27 (1993) 261–266.
- X.Y. Ma, J. Deng, J. Feng, N. Shanaiah, E. Smiley, A.M. Dietrich,
Identification and characterization of phenylacetonitrile as a
nitrogenous disinfection byproduct derived from chlorination
of phenylalanine in drinking water, Water Res., 102 (2016)
202–210.
- T. Matsushita, M. Sakuma, S. Tazawa, T. Hatase, N. Shirasaki,
Y. Matsui, Use of gas chromatography-mass spectrometryolfactometry
and a conventional flask test to identify off-flavor
compounds generated from phenylalanine during chlorination
of drinking water, Water Res., 125 (2017) 332–340.
- K.G. Babi, K.M. Koumenides, A.D. Nikolaou, C.A. Makri,
F.K. Tzoumerkas, T.D. Lekkas, Pilot study of the removal
of THMs, HAAs and DOC from drinking water by GAC
adsorption, Desalination, 210 (2007) 215–224.
- P. Prarat, C. Ngamcharussrivichai, S. Khaodhiar, P. Punyapalakul,
Adsorption characteristics of haloacetonitriles on
functionalized silica-based porous materials in aqueous solution,
J. Hazard. Mater., 192 (2011) 1210–1218.
- J. Jiang, W. Li, X. Zhang, J. Liu, X. Zhu, A new approach to
controlling halogenated DBPs by GAC adsorption of aromatic
intermediates from chlorine disinfection: Effects of bromide
and contact time, Sep. Purif. Technol., 203 (2018) 260–267.
- M.S. Odziemkowski, L. Gui, R.W. Gillham, Reduction of
N-nitrosodimethylamine with granular iron and nickelenhanced
iron. 2. Mechanistic studies, Environ. Sci. Technol.,
34 (2000) 3495–3500.
- M.G. Davie, M. Reinhard, J.R. Shapley, Metal-catalyzed
reduction of N-nitrosodimethylamine with hydrogen in water,
Environ. Sci. Technol., 40 (2006) 7329–7335.
- G.M. Zhang, I. Hua, Ultrasonic degradation of trichloroacetonitrile,
chloropicrin and bromobenzene: design factors
and matrix effects, Adv. Environ. Res., 4 (2000) 211–218.
- J.Y. Fang, L. Ling, C. Shang, Kinetics and mechanisms of
pH-dependent degradation of halonitromethanes by UV
photolysis, Water Res., 47 (2013) 1257–1266.
- B.Y. Chen, W.T. Lee, P.K. Westerhoff, S.W. Krasner, P. Herckes,
Solar photolysis kinetics of disinfection byproducts, Water
Res., 44 (2010) 3401–3409.
- G.A. De Vera, D. Stalter, W. Gernjak, H.S. Weinberg, J. Keller,
M.J. Farré, Towards reducing DBP formation potential of
drinking water by favouring direct ozone over hydroxyl
radical reactions during ozonation, Water Res., 87 (2015) 49–58.
- C. Zhou, N.Y. Gao, Y. Deng, W.H. Chu, W.L. Rong, S.D. Zhou,
Factors affecting ultraviolet irradiation/hydrogen peroxide
(UV/H2O2) degradation of mixed N-nitrosamines in water,
J. Hazard. Mater., 231–232 (2012) 43–48.
- P.B. Hatzinger, C. Condee, K.R. McClay, T.A. Paul, Aerobic
treatment of N-nitrosodimethylamine in a propane-fed membrane
bioreactor, Water Res., 45 (2011) 254–262.
- D. Fournier, J. Hawari, A. Halasz, S.H. Streger, K.R. McClay,
H. Masuda, P.B. Hatzinger, Aerobic biodegradation of
N-nitrosodimethylamine by the propanotroph Rhodococcus ruber ENV425, Appl. Environ. Microbiol., 75 (2009) 5088–5093.
- S.M. Korotta-Gamage, A. Sathasivan, A review: potential
and challenges of biologically activated carbon to remove
natural organic matter in drinking water purification process,
Chemosphere, 167 (2017) 120–138.
- K. Watson, M.J. Farré, N. Knight, Comparing a silverimpregnated
activated carbon with an unmodified activated
carbon for disinfection by-product minimisation and precursor
removal, Sci. Total Environ., 542 (2016) 672–684.
- L. Cermakova, I. Kopecka, M. Pivokonsky, L. Pivokonska,
V. Janda, Removal of cyanobacterial amino acids in water
treatment by activated carbon adsorption, Sep. Purif. Technol.,
173 (2017) 330–338.
- A.S. Tawfik, A.S. Omobayo, A. Mohammad, H. Dafalla,
Statistical analysis of phenols adsorption on diethylenetriaminemodified
activated carbon, J. Cleaner Prod., 182 (2018) 960–968.
- C.A. Chiu, P. Westerhoff, A. Ghosh, GAC removal of organic
nitrogen and other DBP precursors, J. Am. Water Works Assn.,
104 (2012) 406–415.
- D. Hanigan, J. Zhang, P. Herckes, S.W. Krasner, C. Chen,
P. Westerhoff, Adsorption of N-nitrosodimethylamine
precursors by powdered and granular activated carbon,
Environ. Sci. Technol., 46 (2012) 12630–12639.
- S. Velten, D.R.U. Knappe, J. Traber, H.P. Kaiser, U. von Gunten,
M. Boller, S. Meylan, Characterization of natural organic matter
adsorption in granular activated carbon adsorbers, Water Res.,
45 (2011) 3951–3959.
- W. Chen, L. Duan, D. Zhu, Adsorption of polar and nonpolar
organic chemicals to carbon nanotubes, Environ. Sci. Technol.,
41 (2007) 8295–8300.
- M.S. Islam, K.N. McPhedran, S.A. Messele, Y. Liu, E.M. Gamal,
Isotherm and kinetic studies on adsorption of oil sands processaffected
water organic compounds using granular activated
carbon, Chemosphere, 202 (2018) 716–725.
- H. Fu, X. Li, J. Wang, P. Lin, C. Chen, X. Zhang, Activated carbon
adsorption of quinolone antibiotics in water: performance,
mechanism, and modeling, J. Environ. Sci., 56 (2017) 145–152.
- J. Qian, M. Shen, P. Wang, C. Wang, K. Li, J. Liu, B. Lu,
X. Tian, Perfluorooctane sulfonate adsorption on powder
activated carbon: effect of phosphate (P) competition, pH, and
temperature, Chemosphere, 182 (2017) 215–222.
- B.H. Hameed, I.A.W. Tan, A.L. Ahmad, Adsorption isotherm,
kinetic modeling and mechanism of 2,4,6-trichlorophenol on
coconut husk-based activated carbon, Chem. Eng. J., 144 (2008)
235–244.
- A. Kumar, B. Prasad, I.M. Mishra, Adsorptive removal of
acrylonitrile by commercial grade activated carbon: kinetics,
equilibrium and thermodynamics, J. Hazard. Mater., 152 (2008)
589–600.
- Q.-S. Liu, T. Zheng, P. Wang, J.-P. Jiang, N. Li, Adsorption
isotherm, kinetic and mechanism studies of some substituted
phenols on activated carbon fibers, Chem. Eng. J., 157 (2010)
348–356.
- M, Malakootian, H.J. Mansoorian, A.R. Yari, Removal of
reactive dyes from aqueous solutions by a non-conventional
and low cost agricultural waste: adsorption on ash of Aloe Vera
plant, Iran J. Health Saf. Environ., 1 (2014) 117–125.
- C.J. Shi, Hydrolysis of Nitriles in Near-Critical Water, Zhejiang
University, Hangzhou, 2008.
- J.A. Mattson, H.B. Mark Jr., M.D. Malbin, W.J. Weber,
J.C. Crittenden, Surface chemistry of active carbon: specific
adsorption of phenols, J. Colloid Interface Sci., 31 (1969)
116–130.
- M.N. Paddon-Row, C. Santiago, K.N. Houk, The possibility of
pi-electron donation by the electron-withdrawing substituents
CN, CHO, CF3, and NH3, J. Am. Chem. Soc., 102 (1980)
6561–6563.
- M. Malakootian, S. Mohammadi, N. Amirmahani, Z. Nasiri,
A. Nasiri, Kinetics, thermodynamics and equilibrium studies
on adsorption of reactive red 198 from textile wastewater by
coral limestone as a natural sorbent, J. Community Health Res.,
5 (2016) 73–89.
- Pub Chem, Phenylacetonitrile. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Phenylacetonitrile#section=Top (Accessed on: 28 March 2018).