References

  1. J.J. Rook, Formation of haloforms during chlorination of natural waters, Water Treat. Exam, 23 (1974) 234–243.
  2. C. Cortés, R. Marcos, Genotoxicity of disinfection byproducts and disinfected waters: a review of recent literature, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 831 (2018) 1–12.
  3. C. Legay, M.J. Rodriguez, J.B. Sérodes, P. Levallois, Estimation of chlorination by-products presence in drinking water in epidemiological studies on adverse reproductive outcomes: a review, Sci. Total Environ., 408 (2010) 456–472.
  4. M. Yang, X. Zhang, Current trends in the analysis and identification of emerging disinfection byproducts, Trends Environ. Anal. Chem., 10 (2016) 24–34.
  5. J. On, H. Pyo, S.W. Myung, Effective and sensitive determination of eleven disinfection byproducts in drinking water by DLLME and GC-MS, Sci. Total Environ., 639 (2018) 208–216.
  6. S.D. Richardson, M.J. Plewa, E.D. Wagner, R. Schoeny, D.M. Demarini, Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research, Mutat. Res., 636 (2007) 178–242.
  7. EPA (Environmental Protection Agency), National Primary Drinking Water Regulations: Stage 2 Disinfectants and Disinfection Byproducts Rule, Federal Register, 71 (2006) 387–493.
  8. World Health Organization (WHO), Guidelines for Drinking- Water Quality, 4th ed., Recommendations, Geneva, Switzerland, 2011.
  9. Ministry of Health of the People’s Republic of China, Standards for Drinking Water Quality (GB 5749-2006).
  10. European Union Council Directive, 98/83/EC of 3 November 1998 Relative to the Quality of Drinking Water, Official Journal of the European Communities, 1998.
  11. W.H. Chu, N.Y. Gao, Y. Deng, S.W. Krasner, Precursors of dichloroacetamide, an emerging nitrogenous DBP formed during chlorination or chloramination, Environ. Sci. Technol., 44 (2010) 3908–3912.
  12. W.H. Chu, N.Y. Gao, Y. Deng, M.R. Templeton, D.Q. Yin, Formation of nitrogenous disinfection by-products from prechloramination, Chemosphere, 85 (2011) 1187–1191.
  13. L. Yang, D. Kim, H. Uzun, T. Karanfil, J. Hur, Assessing trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA) formation potentials in drinking water treatment plants using fluorescence spectroscopy and parallel factor analysis, Chemosphere, 121 (2015) 84–91.
  14. A.D. Shah, W.A. Mitch, Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: a critical review of nitrogenous disinfection byproduct formation pathways, Environ. Sci. Technol., 46 (2011) 119–131.
  15. S.D. Richardson, A.D. Thruston Jr., S.W. Krasner, H.S. Weinberg, R.J. Miltner, K.M. Schenck, M.G. Narotsky, A.B. McKague, J.E. Simmons, Integrated disinfection by-products mixtures research: comprehensive characterization of water concentrates prepared from chlorinated and ozonated/postchlorinated drinking water, J. Toxicol. Environ. Health, 71 (2008) 1165–1186.
  16. I. Freuze, S. Brosillon, D. Herman, A. Laplanche, C. Démocrate, J. Cavard, Odorous products of the chlorination of phenylalanine in water: formation, evolution, and quantification, Environ. Sci. Technol., 38 (2004) 4134–4139.
  17. I. Freuze, S. Brosillon, A. Laplanche, D. Tozza, J. Cavard, Effect of chlorination on the formation of odorous disinfection by-products, Water Res., 39 (2005) 2636–2642.
  18. B. Conyers, F.E. Scully Jr., N-chloroaldimines. 3. Chlorination of phenylalanine in model solutions and in a wastewater, Environ. Sci. Technol., 27 (1993) 261–266.
  19. X.Y. Ma, J. Deng, J. Feng, N. Shanaiah, E. Smiley, A.M. Dietrich, Identification and characterization of phenylacetonitrile as a nitrogenous disinfection byproduct derived from chlorination of phenylalanine in drinking water, Water Res., 102 (2016) 202–210.
  20. T. Matsushita, M. Sakuma, S. Tazawa, T. Hatase, N. Shirasaki, Y. Matsui, Use of gas chromatography-mass spectrometryolfactometry and a conventional flask test to identify off-flavor compounds generated from phenylalanine during chlorination of drinking water, Water Res., 125 (2017) 332–340.
  21. K.G. Babi, K.M. Koumenides, A.D. Nikolaou, C.A. Makri, F.K. Tzoumerkas, T.D. Lekkas, Pilot study of the removal of THMs, HAAs and DOC from drinking water by GAC adsorption, Desalination, 210 (2007) 215–224.
  22. P. Prarat, C. Ngamcharussrivichai, S. Khaodhiar, P. Punyapalakul, Adsorption characteristics of haloacetonitriles on functionalized silica-based porous materials in aqueous solution, J. Hazard. Mater., 192 (2011) 1210–1218.
  23. J. Jiang, W. Li, X. Zhang, J. Liu, X. Zhu, A new approach to controlling halogenated DBPs by GAC adsorption of aromatic intermediates from chlorine disinfection: Effects of bromide and contact time, Sep. Purif. Technol., 203 (2018) 260–267.
  24. M.S. Odziemkowski, L. Gui, R.W. Gillham, Reduction of N-nitrosodimethylamine with granular iron and nickelenhanced iron. 2. Mechanistic studies, Environ. Sci. Technol., 34 (2000) 3495–3500.
  25. M.G. Davie, M. Reinhard, J.R. Shapley, Metal-catalyzed reduction of N-nitrosodimethylamine with hydrogen in water, Environ. Sci. Technol., 40 (2006) 7329–7335.
  26. G.M. Zhang, I. Hua, Ultrasonic degradation of trichloroacetonitrile, chloropicrin and bromobenzene: design factors and matrix effects, Adv. Environ. Res., 4 (2000) 211–218.
  27. J.Y. Fang, L. Ling, C. Shang, Kinetics and mechanisms of pH-dependent degradation of halonitromethanes by UV photolysis, Water Res., 47 (2013) 1257–1266.
  28. B.Y. Chen, W.T. Lee, P.K. Westerhoff, S.W. Krasner, P. Herckes, Solar photolysis kinetics of disinfection byproducts, Water Res., 44 (2010) 3401–3409.
  29. G.A. De Vera, D. Stalter, W. Gernjak, H.S. Weinberg, J. Keller, M.J. Farré, Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation, Water Res., 87 (2015) 49–58.
  30. C. Zhou, N.Y. Gao, Y. Deng, W.H. Chu, W.L. Rong, S.D. Zhou, Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water, J. Hazard. Mater., 231–232 (2012) 43–48.
  31. P.B. Hatzinger, C. Condee, K.R. McClay, T.A. Paul, Aerobic treatment of N-nitrosodimethylamine in a propane-fed membrane bioreactor, Water Res., 45 (2011) 254–262.
  32. D. Fournier, J. Hawari, A. Halasz, S.H. Streger, K.R. McClay, H. Masuda, P.B. Hatzinger, Aerobic biodegradation of N-nitrosodimethylamine by the propanotroph Rhodococcus ruber ENV425, Appl. Environ. Microbiol., 75 (2009) 5088–5093.
  33. S.M. Korotta-Gamage, A. Sathasivan, A review: potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process, Chemosphere, 167 (2017) 120–138.
  34. K. Watson, M.J. Farré, N. Knight, Comparing a silverimpregnated activated carbon with an unmodified activated carbon for disinfection by-product minimisation and precursor removal, Sci. Total Environ., 542 (2016) 672–684.
  35. L. Cermakova, I. Kopecka, M. Pivokonsky, L. Pivokonska, V. Janda, Removal of cyanobacterial amino acids in water treatment by activated carbon adsorption, Sep. Purif. Technol., 173 (2017) 330–338.
  36. A.S. Tawfik, A.S. Omobayo, A. Mohammad, H. Dafalla, Statistical analysis of phenols adsorption on diethylenetriaminemodified activated carbon, J. Cleaner Prod., 182 (2018) 960–968.
  37. C.A. Chiu, P. Westerhoff, A. Ghosh, GAC removal of organic nitrogen and other DBP precursors, J. Am. Water Works Assn., 104 (2012) 406–415.
  38. D. Hanigan, J. Zhang, P. Herckes, S.W. Krasner, C. Chen, P. Westerhoff, Adsorption of N-nitrosodimethylamine precursors by powdered and granular activated carbon, Environ. Sci. Technol., 46 (2012) 12630–12639.
  39. S. Velten, D.R.U. Knappe, J. Traber, H.P. Kaiser, U. von Gunten, M. Boller, S. Meylan, Characterization of natural organic matter adsorption in granular activated carbon adsorbers, Water Res., 45 (2011) 3951–3959.
  40. W. Chen, L. Duan, D. Zhu, Adsorption of polar and nonpolar organic chemicals to carbon nanotubes, Environ. Sci. Technol., 41 (2007) 8295–8300.
  41. M.S. Islam, K.N. McPhedran, S.A. Messele, Y. Liu, E.M. Gamal, Isotherm and kinetic studies on adsorption of oil sands processaffected water organic compounds using granular activated carbon, Chemosphere, 202 (2018) 716–725.
  42. H. Fu, X. Li, J. Wang, P. Lin, C. Chen, X. Zhang, Activated carbon adsorption of quinolone antibiotics in water: performance, mechanism, and modeling, J. Environ. Sci., 56 (2017) 145–152.
  43. J. Qian, M. Shen, P. Wang, C. Wang, K. Li, J. Liu, B. Lu, X. Tian, Perfluorooctane sulfonate adsorption on powder activated carbon: effect of phosphate (P) competition, pH, and temperature, Chemosphere, 182 (2017) 215–222.
  44. B.H. Hameed, I.A.W. Tan, A.L. Ahmad, Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon, Chem. Eng. J., 144 (2008) 235–244.
  45. A. Kumar, B. Prasad, I.M. Mishra, Adsorptive removal of acrylonitrile by commercial grade activated carbon: kinetics, equilibrium and thermodynamics, J. Hazard. Mater., 152 (2008) 589–600.
  46. Q.-S. Liu, T. Zheng, P. Wang, J.-P. Jiang, N. Li, Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers, Chem. Eng. J., 157 (2010) 348–356.
  47. M, Malakootian, H.J. Mansoorian, A.R. Yari, Removal of reactive dyes from aqueous solutions by a non-conventional and low cost agricultural waste: adsorption on ash of Aloe Vera plant, Iran J. Health Saf. Environ., 1 (2014) 117–125.
  48. C.J. Shi, Hydrolysis of Nitriles in Near-Critical Water, Zhejiang University, Hangzhou, 2008.
  49. J.A. Mattson, H.B. Mark Jr., M.D. Malbin, W.J. Weber, J.C. Crittenden, Surface chemistry of active carbon: specific adsorption of phenols, J. Colloid Interface Sci., 31 (1969) 116–130.
  50. M.N. Paddon-Row, C. Santiago, K.N. Houk, The possibility of pi-electron donation by the electron-withdrawing substituents CN, CHO, CF3, and NH3, J. Am. Chem. Soc., 102 (1980) 6561–6563.
  51. M. Malakootian, S. Mohammadi, N. Amirmahani, Z. Nasiri, A. Nasiri, Kinetics, thermodynamics and equilibrium studies on adsorption of reactive red 198 from textile wastewater by coral limestone as a natural sorbent, J. Community Health Res., 5 (2016) 73–89.
  52. Pub Chem, Phenylacetonitrile. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/Phenylacetonitrile#section=Top (Accessed on: 28 March 2018).