References

  1. T. Aman, A.A. Kazi, M.U. Sabri, Q. Bano, Potato peels as solid waste for the removal of heavy metal copper (II) from waste water/industrial effluent, Colloids Surfaces B Biointerf., 63 (2008) 116–121.
  2. X. Zhou, Y. Liu, J. Zhou, J. Guo, J. Ren, F. Zhou, Efficient removal of lead from aqueous solution by urea-functionalized magnetic biochar: Preparation, characterization and mechanism study, J. Taiwan Inst. Chem. Eng., 91 (2018) 457–467.
  3. M. Bystrzejewski, K. Pyrzyńska, A. Huczko, H. Lange, Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions, Carbon, 47 (2009) 1201–1204.
  4. Q. Qiu, X. Jiang, G. Lv, Z. Chen, S. Lu, M. Ni, J. Yan, X. Deng, Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment, Powder Technol., 335 (2018) 156–163.
  5. Z. Li, L. Wang, J. Meng, X. Liu, J. Xu, F. Wang, P. Brookes, Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil, J. Hazard. Mater., 344 (2017) 1–11.
  6. X.M. Zheng, J.F. Dou, M. Xia, A.Z. Ding, Ammonium-pillared montmorillonite-CoFe2O4 composite caged in calcium alginate beads for the removal of Cs+ from wastewater, Carbohyd. Polym., 167 (2017) 306–316.
  7. S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater., 97 (2003) 219–243.
  8. M. Wang, Y. Zhu, L. Cheng, B. Andserson, X. Zhao, D. Wang, A. Ding, Review on utilization of biochar for metal-contaminated soil and sediment remediation, J. Environ. Sci.-China, 63 (2018) 156–173.
  9. W. Zhang, S. Mao, H. Chen, L. Huang, R. Qiu, Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions, Bioresour. Technol., 147 (2013) 545–552.
  10. E.B. Son, K.M. Poo, J.S. Chang, K.J. Chae, Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass, Sci. Total Environ., 615 (2018) 161.
  11. K.B. Cantrell, P.G. Hunt, M. Uchimiya, J.M. Novak, K.S. Ro, Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar, Bioresour. Technol., 107 (2012) 419–428.
  12. S. Wang, Y. Tang, C. Chen, J. Wu, Z. Huang, Y. Mo, K. Zhang, J. Chen, Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead(II) removal, Bioresour. Technol., 186 (2015) 360–364
  13. W. Yap, N.M. Mubarak, J.N. Sahu, E.C. Abdullah, Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater, J. Ind. Eng. Chem., 45 (2017) 287–295.
  14. M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol., 44 (2010) 1247–1253.
  15. J.H. Yuan, R.K. Xu, H. Zhang, The forms of alkalis in the biochar produced from crop residues at different temperatures, Bioresour. Technol., 102 (2011) 3488–3497.
  16. J. Zheng, J. Dou, J. Yuan, W. Qin, X. Hong, A. Ding, Removal of Cs+ from water and soil by ammonium-pillared montmorillonite/Fe3O4 composite, J. Environ. Sci.-China, 56 (2017) 12–24.
  17. J. Lu, X. Jiao, D. Chen, W. Li, Solvo thermal synthesis and characterization of Fe3O4 and γ-Fe2O3, Nanoplates, J. Phys. Chem. C., 113 (2009) 4012–4017.
  18. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Chem. Phys., 40 (2015) 1361–1403.
  19. X. Zhou, Y. Liu, J. Zhou, J. Guo, J. Ren, F. Zhou, Efficient removal of lead from aqueous solution by urea-functionalized magnetic biochar: Preparation, characterization and mechanism study, J. Taiwan. Inst. Chem. E., 91 (2018) 457–467.
  20. D. Karamanis, P.A. Assimakopoulos, Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions, Water Res., 41 (2007) 1897–1906.
  21. S. Yang, C. Han, X. Wang, M. Nagatsu, Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites, J. Hazard. Mater., 274 (2014) 46–52.
  22. S. Yang, N. Okada, M. Nagatsu, The highly effective removal of Cs⁺ by low turbidity chitosan-grafted magnetic bentonite, J. Hazard. Mater., 301 (2016) 8–16.
  23. A.G. Volkov, S. Paula, D.W. Deamer, Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers, Bioelectrochem. Bioenergetics, 42 (1997) 153–160.
  24. E.R. Nightingale, Phenomenological theory of ion solvation effective radii of hydrated ions, J. Phys. Chem., 63 (1959) 1381–1387.
  25. Z. Yin, Y. Liu, S. Liu, L. Jiang, X. Tan, G. Zeng, M. Li, S. Liu, S. Tian, Y. Fang, Activated magnetic biochar by one-step synthesis: Enhanced adsorption and coadsorption for 17β-estradiol and copper, Sci. Total Environ., 639 (2018) 1530–1542.
  26. C. Souza, D. Majuste, M.S.S. Dantas, V.S.T. Ciminelli, Effect of zinc ion on copper speciation and adsorption on activated carbon, Hydrometallurgy, 176 (2018) 78–86.
  27. K. Li, X. Wang, Adsorptive removal of Pb(II) by activated carbon prepared from Spartina alterniflora: Equilibrium, kinetics and thermodynamics, Bioresour. Technol., 100 (2009) 2810–2815.
  28. C.K. Singh, J.N. Sahu, K.K. Mahalik, C.R. Mohanty, B.R. Mohan, B.C. Meikap, Studies on the removal of Pb(II) from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid, J. Hazard. Mater., 153 (2008) 221–228.