References
- X.-j. Wang, J.-y. Zhang, S. Shamsuddin, X.-h. Xia, R.-m. He,
M.-t. Shang, Catastrophe theory to assess water security and
adaptation strategy in the context of environmental change,
Mitigation Adapt. Strategies Global Change, 19 (2012) 463–477.
- UN General Assembly, Transforming Our World: The 2030
Agenda for Sustainable Development, 21 October 2015,
A/RES/70/1, Available at: https://www.refworld.org/docid/57b6e3e44.html (Accessed 1 July 2019).
- FAO, AQUASTAT Website, Food and Agriculture Organization
of the United Nations (FAO), 2016. Available at: http://www.fao.org/nr/water/aquastat/water_use/index.stm (Acessed 24 July
2018).
- M.A. Abdelkareem, M. El Haj Assad, E.T. Sayed, B. Soudan,
Recent progress in the use of renewable energy sources to power
water desalination plants, Desalination, 435 (2018) 97–113.
- A. Siddiqi, L.D. Anadon, The water–energy nexus in Middle
East and North Africa, Energy Policy, 39 (2011) 4529–4540.
- G. Micale, A. Cipollina, L. Rizzuti, Seawater Desalination for
Freshwater Production, G. Micale, L. Rizzuti, A. Cipollina, Eds.,
Seawater Desalination, Green Energy and Technology, Springer,
Berlin, Heidelberg, 2009, pp. 1–15.
- S.M. Rao, P. Mamatha, Water quality in sustainable water
management, Curr. Sci., 87 (2004) 942–947.
- Global Water Intelligence - GWI, IDA Desalination Yearbook
2017–2018, IDA -International Desalination Association, GWI,
Oxford, 2017.
- K.S. Boden, C.V. Subban, A Road Map for Small-Scale
Desalination, Oxfam International, Oxford, UK, 2018.
- M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis,
B.J. Mariñas, A.M. Mayes, Science and technology for water
purification in the coming decades, Nature, 452 (2008) 301–310.
- M.P. Shahabi, A. Mchugh, M. Anda, G. Ho, Comparative
economic and environmental assessments of centralised and
decentralised seawater desalination options, Desalination,
376 (2015) 25–34.
- S. Kuravi, J. Trahan, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos,
Thermal energy storage technologies and systems for
concentrating solar power plants, Prog. Energy Combust. Sci.,
39 (2013) 285–319.
- T.T.D. Tran, A.D. Smith, Evaluation of renewable energy
technologies and their potential for technical integration and
cost-effective use within the U.S. energy sector, Renewable
Sustainable Energy Rev., 80 (2017) 1372–1388.
- S. de Sousa Medeiros, A. de Mendonça Barreto Cavalcante,
A.M.P. Marin, L.B. de Melo Tinôco, I.H. Salcedo, T.F. Pinto,
Sinópse do Censo Demográfico para o Semiárido Brasileiro,
Instituto Nacional do Semiárido, Campina Grande – PB, 2012.
- International Desalination Association, Water Desalination +
Reuse, Latin America: Unlocking Emerging Market Potential,
UK, 2017.
- Global Water Intelligence - GWI, Global Water Market 2017:
Meeting the World’s Water and Wastewater Needs Until 2020,
GWI, Oxford, UK, 2016.
- Global Water Intelligence - GWI, IDA Desalination Desalination
Yearbook 2015–2016, IDA - International Desalination Association,
GWI, Oxford, UK, 2015.
- S. Loutatidou, M.O. Mavukkandy, S. Chakraborty, Introduction:
What is Sustainable Desalination?, Desal. Sustainable, (2017)
1–30. doi: 10.1016/B978-0-12-809791-5.00001-8.
- P. Cabrera, J.A. Carta, J. González, G. Melián, Wind-driven
SWRO desalination prototype with and without batteries:
a performance simulation using machine learning models,
Desalination, 435 (2018) 77–96.
- J.C. Bruno, A. Coronas, Use of Thermal Solar Energy in
Distributed Small-Scale Plants for Water Desalination, Universitat
Rovira i Virgili, Spain, 2010, pp. 20–27.
- J. Leijon, C. Boström, Freshwater production from the
motion of ocean waves – A review, Desalination, 435 (2018)
161–171.
- S. Liyanaarachchi, L. Shu, S. Muthukumaran, V. Jegatheesan,
K. Baskaran, Problems in seawater industrial desalination
processes and potential sustainable solutions: a review, Rev.
Environ. Sci. Biotechnol., 13 (2014) 203–214.
- V.G. Gude, Desalination and sustainability - An appraisal and
current perspective, Water Res., 89 (2016) 87–106.
- A. Subramani, J.G. Jacangelo, Emerging desalination technologies
for water treatment: a critical review, Water Res.,
75 (2015) 164–187.
- A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and
water production cost of conventional and renewable-energy-powered
desalination processes, Renewable Sustainable Energy
Rev., 24 (2013) 343–356.
- A. Maleki, F. Pourfayaz, M.H. Ahmadi, Design of a cost-effective
wind/photovoltaic/hydrogen energy system for supplying a
desalination unit by a heuristic approach, Sol. Energy, 139 (2016)
666–675.
- M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-water environment
nexus underpinning future desalination sustainability,
Desalination, 413 (2017) 52–64.
- H. Shemer, R. Semiat, Sustainable RO desalination – Energy
demand and environmental impact, Desalination, 424 (2017)
10–16.
- D. Zarzo, D. Prats, Desalination and energy consumption.
What can we expect in the near future?, Desalination, 427 (2018)
1–9.
- N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and
evaluation of the economics of water desalination: current
and future challenges for better water supply sustainability,
Desalination, 309 (2013) 197–207.
- N. Ghaffour, J. Bundschuh, H. Mahmoudi, M.F.A. Goosen,
Renewable energy-driven desalination technologies: a comprehensive
review on challenges and potential applications of
integrated systems, Desalination, 356 (2015) 94–114.
- A.F. Ismail, M. Padaki, N. Hilal, T. Matsuura, W.J. Lau, Thin
film composite membrane — recent development and future
potential, Desalination, 356 (2014) 140–148.
- Y. Ghalavand, M.S. Hatamipour, A. Rahimi, A review on energy
consumption of desalination processes, Desal. Wat. Treat,
54 (2015) 1526–1541.
- S. Manju, N. Sagar, Renewable energy integrated desalination:
a sustainable solution to overcome future fresh-water scarcity
in India, Renewable Sustainable Energy Rev., 73 (2017)
594–609.
- Y. Cohen, R. Semiat, A. Rahardianto, A perspective on reverse
osmosis water desalination: quest for sustainability, Am. Inst.
Chem. Eng. - AIChE J., 63 (2017) 1771–1784.
- H. Cooley, N. Ajami, Key Issues in Seawater Desalination in
California: Costs and Financing, Pacific Institute, Oakland, CA,
2014.
- H. Cooley, N. Ajami, Key Issues for Seawater Desalination
in California, N. Ajami, Ed., The World’s Water, Washington,
D.C., 2014. doi: 10.5822/978-1-61091-483-3_6.
- A. Alkaisi, R. Mossad, A. Sharifian-Barforoush, A review of the
water desalination systems integrated with renewable energy,
Energy Procedia, 110 (2017) 268–274.
- U. Ezzeghni, Optimization study of Alwaha BWRO plant for
minimum water cost prediction, in: 2018: pp. 0–10.
- M.A. Alghoul, P. Poovanaesvaran, K. Sopian, M.Y. Sulaiman,
Review of brackish water reverse osmosis (BWRO) system
designs, Renewable Sustainable Energy Rev., 13 (2009) 2661–2667.
- J. Stanton, J.H. Lienhard, Y.D. Ahdab, G.P. Thiel, J.K. Böhlke,
Minimum energy requirements for desalination of brackish
groundwater in the United States with comparison to international
datasets, Water Res., 141 (2018) 387–404.
- A. Bennett, 50th Anniversary: Desalination: 50 years of progress,
Filtr. Sep., 50 (2013) 32–39.
- A. Zhu, P.D. Christofides, Y. Cohen, On RO membrane and
energy costs and associated incentives for future enhancements
of membrane permeability, J. Membr. Sci., 344 (2009) 1–5.
- M. Wilf, S. Alt, Application of low fouling RO membrane
elements for reclamation of municipal wastewater, Desalination,
132 (2000) 11–19.
- M. Li, Reducing specific energy consumption in reverse
osmosis (RO) water desalination: an analysis from first
principles, Desalination, 276 (2011) 128–135.
- L. Song, J.Y. Hu, S.L. Ong, W.J. Ng, M. Elimelech, M. Wilf,
Emergence of thermodynamic restriction and its implications
for full-scale reverse osmosis processes, Desalination, 155 (2003)
213–228.
- T.H. Chong, S.-L. Loo, A.G. Fane, W.B. Krantz, Energy-efficient
reverse osmosis desalination: effect of retentate recycle and
pump and energy recovery device efficiencies, Desalination,
366 (2015) 15–31.
- B. Peñate, L. García-Rodríguez, Energy optimisation of existing
SWRO (seawater reverse osmosis) plants with ERT (energy
recovery turbines): technical and thermoeconomic assessment,
Energy, 36 (2011) 613–626.
- V.G. Gude, Energy consumption and recovery in reverse
osmosis, Desal. Wat. Treat., 36 (2011) 239–260.
- C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-the-art
of reverse osmosis desalination, Desalination, 216 (2007)
1–76.
- N.M. Eshoul, B. Agnew, A. Anderson, M.S. Atab, Exergetic
and economic analysis of two-pass RO desalination proposed
plant for domestic water and irrigation, Energy, 122 (2017)
319–328.
- The Spanish Ministry of Agriculture, ACUAMED – The Spanish
Approach – The Public Corporation Model, in: Reg. Mediterr.
Work. Desalination, Non Revenue Water Reduct. Public-Private
Partnersh. under Water Scarcity, World Bank, Marseilles –
France, 2016: pp. 2–20. Available at: https://www.cmimarseille.org/sites/default/files/newsite/library/files/en/2.7. F. Lopez Unzu_The Spanish institutional approach for desalination – thepublic corporation model_0.pdf.
- A. Bennett, Cost effective desalination: innovation continues
to lower desalination costs, Filtr. Sep., 48 (2011) 24–27.
- N. Voutchkov, Desalination – Past, Present and Future, in:
IDA International Conference on Water Reuse and Recycling:
Turning Vision into Reality, IDA - International Desalination
Association, Nice, France, 2016, pp. 25–27.
- B. Sauvet-Goichon, Ashkelon desalination plant — A successful
challenge, Desalination, 203 (2007) 75–81.
- I.C. Karagiannis, P.G. Soldatos, Water desalination cost
literature: review and assessment, Desalination, 223 (2008)
448–456.
- IBGE, Censo Demográfico, Censo Demográfico, Brazilian
Institute of Geography and Statistics, Brasília, Brasil, 2010.
Available at: https://ww2.ibge.gov.br/home/estatistica/populacao/censo2010/default.shtm (Accessed on 25 July 2018).
- IBGE - Brazilian Institute of Geography and Statistics,
“Geoestatísticas” Revelam Patrimônio Ambiental da Amazônia
Legal, Censo 2010, Brasília, Brasil, 2011. Available at: https://censo2010.ibge. gov.br/noticias-censo.html?busca=1&id=1&idnoticia=1887&t=geoestatisticas-revelam-patrimonio-ambientalamazonialegal&view=noticia (Accessed 31 July 2018).
- ANA, Conjuntura dos Recursos Hídricos, Brazilian Water
Agency, Brasília, Brasil, 2017. Available at: http://www.snirh.gov.br/portal/snirh/centrais-de-conteudos/conjuntura-dosrecursos-hidricos/conj2017_rel-1.pdf (Accessed 02 August
2018).
- Brasil, Brazilian Water Act, law 9433/1997, Repub. Fed. Brazil,
1997. Available at: http://www.planalto.gov.br/CCivil_03/Leis/L9433.htm (Accessed on 25 July 2018).
- Ministério das Cidades, SNIS - Série Histórica, Sist. Nac.
Informações Sobre Saneam, Brasília, Brasil, 2015. Available at:
http://app3.cidades.gov.br/serieHistorica/ (Accessed 25 July
2018).
- WHO, How Much Water is Needed in Emergencies, World
Health Organization, Geneva, Switzerland, 2013. Available at:
https://www.who.int/water_sanitation_health/publications/2011/tn9_how_much_water_en.pdf (Accessed 15 August
2018).
- ANEEL, Capacidade de Geração do Brasil, BIG - Banco
deInformações de Geração. Brasília, Brasil, 2018. Available
at: http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm (Accessed 1 January 2018).
- A. Ferreira, S.S. Kunh, K.C. Fagnani, T.A. De Souza, C. Tonezer,
G.R. Dos Santos, C.H. Coimbra-Araújo, Economic overview of
the use and production of photovoltaic solar energy in brazil,
Renewable Sustainable Energy Rev., 81 (2018) 181–191.
- ANEEL, Leilão de geração “A-4” termina com deságio de
59,07%, Agência Nacional de Energia Elétrica. Brasília,
Brasil, 2018. Available at: http://www.aneel.gov.br/sala-deimprensa-exibicao/-/asset_publisher/XGPXSqdMFHrE/content/leilao-de-geracao-a-4-termina-com-desagio-de-59-07-/656877?inheritRedirect=false (Accessed 8 February 2018).
- CEPEL, Atlas Eólico Brasileiro - Simulações 2013, Eletrobrás
Electric Power Research Center, Rio de Janeiro, Brasil, 2013.
Available at: http://novoatlas.cepel.br/index.php/mapas-tematicos/(Accessed 13 September 2018).
- E.B. Pereira, F.R. Martins, A.R. Gonçalves, R.S. Costa, F.J.L. de
Lima, R. Rüther, S.L. de Abreu, G.M. Tiepolo, S.V. Pereira,
J.G. Souza, Atlas Brasileiro de Energia Solar, 2nd ed., INPE, São
José dos Campos, 2017.
- BRASIL, Programa Água Doce, MMA, Brasília, DF, 2012.
Available at: http://www.mma.gov.br/publicacoes/agua/category/41-agua-doce?download=986:programa-agua-docedocumento-base-2012.
- MMA, Água Doce, Programa Água Doce, Ministry of the
Environment, Brasília, Brasil, 2018. Available at: http://www.mma.gov.br/agua/agua-doce (Accessed 25 July 2018).
- R.S. Ferreira, H.P. Veiga, R.G.B. dos Santos, A. Saia, S.C. Rodrigues,
A.F.M. Bezerra, L.C. Hermes, A. Moura, L.H. Cunha, Empowering
Brazilian northeast rural communities to desalinated
drinking water access: Programa Água Doce, International
Desalination Association World Congress, IDA - International
Desalination Association, São Paulo, Brazil, 2017, pp. 1–13.
- Interview taken in the IDA 2017 World Congress on Water
Reuse and Desalination, São Paulo, Brazil.
- J. Liu, S. Chen, H. Wang, X. Chen, Calculation of carbon
footprints for water diversion and desalination projects, Energy
Procedia, 75 (2015) 2483–2494.
- World Bank, Renewable Energy Desalination: An Emerging
Solution to Close the Water Gap in the Middle East and North
Africa, The World Bank, Washington, D.C., 2012.
- O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy
resources: Current status, future prospects and their enabling
technology, Renewable Sustainable Energy Rev., 39 (2014)
748–764.
- I. Khamis, K.C. Kavvadias, Nuclear desalination: Practical
measures to prevent pathways of contamination, Desalination,
321 (2013) 55–59.
- J.A. Carta, J. González, C. Gómez, Operating results of a
wind–diesel system which supplies the full energy needs of an
isolated village community in the Canary Islands, Sol. Energy,
74 (2003) 53–63.
- M. Gökçek, Integration of hybrid power (wind-photovoltaic diesel-battery) and seawater reverse osmosis systems for
small-scale desalination applications, Desalination, 435 (2018)
210–220.
- M.F.A. Goosen, H. Mahmoudi, N. Ghaffour, J. Bundschuh, Y. Al
Yousef, A critical evaluation of renewable energy technologies
for desalination, Appl. Mater. Sci. Environ. Mater., Phuket
Island, Thailand (2016) 233–258.
- J. Bundschuh, J. Hoinkis, Addressing Freshwater Shortage
with Renewable Energies, CRC Press, 2012.
- M. Shatat, M. Worall, S. Riffat, Opportunities for solar water
desalination worldwide: review, Sustainable Cities Soc.,
9 (2013) 67–80.
- M.A. Eltawil, Z. Zhengming, L. Yuan, Renewable Energy Powered
Desalination Systems: Technologies and Economics-State of
the Art, Twelfth International Water Technology Conference,
Alexandria, Egypt, 2008, pp. 1–38. Available at: http://iwtc.info/wp-content/uploads/2010/09/RENEWABLE-ENERGYPOWERED-DESALINATION-SYSTEMS.-TECHNOLOGIESAND-ECONOMICS-STATE-OF-THE-ART.pdf (Accessed 08
August 2018).
- M. Moser, F. Trieb, T. Fichter, J. Kern, Renewable desalination:
a methodology for cost comparison, Stuttgart, Germany,
Desal. Wat. Treat., 51 (2013) 1171–1189.
- M. Papapetrou, M. Wieghaus, C. Biercamp, Roadmap for the
Development of Desalination Powered by Renewable Energy,
PRODES Project, 2010, p. 79. Available at: http://www.prodesproject.org/fileadmin/Files/ProDes_Road_map_on_line_version.pdf.
- M.A. Darwish, H.K. Abdulrahim, A.S. Hassan, A.A. Mabrouk,
PV and CSP solar technologies and desalination: economic
analysis, Desal. Wat. Treat., 57 (2016) 16679–16702.
- W.D. Childs, A.E. Dabiri, H.A. Al-Hinai, H.A. Abdullah,
VARI-RO solar-powered desalting technology, Desalination,
125 (1999) 155–166.
- C. Li, Y. Goswami, E. Stefanakos, Solar assisted sea water
desalination: a review, Renewable Sustainable Energy Rev.,
19 (2013) 136–163.
- H. Sharon, K.S. Reddy, A review of solar energy driven
desalination technologies, Renewable Sustainable Energy
Rev., 41 (2015) 1080–1118.
- A.F. Mashaly, A.A. Alazba, A.M. Al-Awaadh, Assessing
the performance of solar desalination system to approach
near-ZLD under hyper arid environment, Desal. Wat. Treat., 57
(2016) 12019–12036.
- A. Cipollina, E. Tzen, V. Subiela, M. Papapetrou, J. Koschikowski,
R. Schwantes, M. Wieghaus, G. Zaragoza, Renewable
energy desalination: performance analysis and operating
data of existing RES desalination plants, Desal. Wat. Treat.,
55 (2015) 3120–3140.
- L. García-Rodríguez, Solar Desalination for the 21st Century,
L. Rizzuti, H.M. Ettouney, A. Cipollina, Eds., NATO Security
through Science Series C:, Springer, Dordrecht, 2007,
pp. 355–369.
- M.T. Ali, H.E.S. Fath, P.R. Armstrong, A comprehensive technoeconomical
review of indirect solar desalination, Renewable
Sustainable Energy Rev., 15 (2011) 4187–4199.
- H. Vyas, K. Suthar, M. Chauhan, R. Jani, P. Bapat, P. Patel,
B. Markam, S. Maiti, Modus operandi for maximizing energy
efficiency and increasing permeate flux of community scale
solar powered reverse osmosis systems, Energy Convers.
Manage., 103 (2015) 94–103.
- A.I. Schäfer, A. Broeckmann, B.S. Richards, Renewable
energy powered membrane technology. 1. Development and
characterization
of a photovoltaic hybrid membrane system,
Environ. Sci. Technol., 41 (2007) 998–1003.
- D. Manolakos, E. Sh. Mohamed, I. Karagiannis, G. Papadakis,
Technical and economic comparison between PV-RO system
and RO-Solar Rankine system. Case study: Thirasia island,
Desalination, 221 (2008) 37–46.
- E. Sh. Mohamed, G. Papadakis, E. Mathioulakis, V. Belessiotis,
A direct coupled photovoltaic seawater reverse osmosis
desalination system toward battery based systems — a
technical and economical experimental comparative study,
Desalination, 221 (2008) 17–22.
- B.S. Richards, L. Masson, A.I. Schäfer, Impact of Feedwater
Salinity on Energy Requirements of a Small-Scale Membrane
Filtration System, E.K. Yanful, Ed., Appropriate Technologies
for Environmental Protection in the Developing World,
Springer, Ghana, Africa, 2009, pp. 123–137.
- B.S. Richards, D.P.S. Capao, A.I. Schafer, Renewable energy
powered membrane technology. 2. The effect of energy fluctuations
on performance of a photovoltaic hybrid membrane
system, Environ. Sci. Technol., 42 (2008) 4563–4569.
- D.B. Riffel, P.C.M. Carvalho, Small-scale photovoltaicpowered
reverse osmosis plant without batteries: design and
simulation, Desalination, 247 (2009) 378–389.
- S. Dallas, N. Sumiyoshi, J. Kirk, K. Mathew, N. Wilmot,
Efficiency analysis of the Solarflow – an innovative solarpowered
desalination unit for treating brackish water, Renewable
Energy, 34 (2009) 397–400.
- M. Khayet, M. Essalhi, C. Armenta-Déu, C. Cojocaru, N. Hilal,
Optimization of solar-powered reverse osmosis desalination
pilot plant using response surface methodology, Desalination,
261 (2010) 284–292.
- L.A. Richards, B.S. Richards, A.I. Schäfer, Renewable
energy powered membrane technology: salt and inorganic
contaminant removal by nanofiltration/reverse osmosis,
J. Membr. Sci., 369 (2011) 188–195.
- F. Banat, H. Qiblawey, Q. Al-Nasser, Design and operation
of small-scale photovoltaic-driven reverse osmosis (PV-RO)
desalination plant for water supply in rural areas, Comput.
Water, Energy, Environ. Eng., 1 (2012) 31–36.
- M.A. Alghoul, P. Poovanaesvaran, M.H. Mohammed, A.M.
Fadhil, A.F. Muftah, M.M. Alkilani, K. Sopian, Design and
experimental performance of brackish water reverse osmosis
desalination unit powered by 2 kW photovoltaic system,
Renewable Energy, 93 (2016) 101–114. Available at: https://doi.org/10.1016/j.renene.2016.02.015 (Accessed 10 July 2018).
- M. Kumaravel, K. Sulochana, R. Gopalaswami, G. Saravanan,
Solar Photo Voltaics Powered Seawater Desalination Plants
and their Techno-Economics, Proceedings of ISES World
Congress 2007, 2007, pp. 1402–1408.
- A.M. Helal, S.A. Al-Malek, E.S. Al-Katheeri, Economic
feasibility of alternative designs of a PV-RO desalination unit
for remote areas in the United Arab Emirates, Desalination,
221 (2008) 1–16.
- H.Ş. Aybar, J.S. Akhatov, N.R. Avezova, A.S. Halimov, Solar
powered RO desalination: investigations on pilot project
of PV powered RO desalination system, Appl. Sol. Energy,
46 (2010) 275–284.
- H. Cherif, J. Belhadj, Large-scale time evaluation for energy
estimation of stand-alone hybrid photovoltaic–wind system
feeding a reverse osmosis desalination unit, Energy, 36 (2011)
6058–6067.
- F.H. Fahmy, N.M. Ahmed, H.M. Farghally, Optimization
of renewable energy power system for small scale brackish
reverse osmosis desalination unit and a tourism motel in
Egypt, Smart Grid Renewable Energy, 3 (2012) 43–50.
- S. Kumarasamy, S. Narasimhan, S. Narasimhan, Optimal
operation of battery-less solar powered reverse osmosis
plant for desalination, Desalination, 375 (2015) 89–99.
- M.A. Jones, I. Odeh, M. Haddad, A.H. Mohammad,
J.C. Quinn, Economic analysis of photovoltaic (PV) powered
water pumping and desalination without energy storage
for agriculture, Desalination, 387 (2016) 35–45.
- K. Mousa, A. Diabat, H. Fath, Optimal design of a hybrid
solar-wind power to drive a small-size reverse osmosis
desalination plant, Desal. Wat. Treat., 51 (2013) 3417–3427.
- H.A. Shawky, A.A. Abdel Fatah, M.M.S. Abo ElFadl,
A.H.M. El-Aassar, Design of a small mobile PV-driven RO
water desalination plant to be deployed at the northwest
coast of Egypt, Desal. Wat. Treat., 55 (2015) 3755–3766.
- M. Lei, L. Shiyan, J. Chuanwen, L. Hongling, Z. Yan, A review
on the forecasting of wind speed and generated power,
Renewable Sustainable Energy Rev., 13 (2009) 915–920.
- M.A. Schilling, M. Esmundo, Technology S-curves in renewable
energy alternatives: analysis and implications for industry
and government, Energy Policy, 37 (2009) 1767–1781.
- Q. Ma, H. Lu, Wind energy technologies integrated with
desalination systems: review and state-of-the-art, Desalination,
277 (2011) 274–280. doi: 10.1016/j.desal.2011.04.041.
- ANEEL, Resultados de Leilões. Brasília, Brasil, 2018. Available
at:http://www.aneel.gov.br/resultados-de-leiloes (Accessed 10
September 2018).
- World Economic Forum, These Countries Produce the Most
Biofuels, World Economic Forum, 2018. Available at: https://www.weforum.org/agenda/2015/11/these-countries-produce-the-most-biofuels/ (Accessed on 11 September 2018).
- J. Shen, A. Jeihanipour, B.S. Richards, A.I. Schäfer, Renewable
energy powered membrane technology: experimental investigation
of system performance with variable module size and
fluctuating energy, Sep. Purif. Technol., 221 (2019) 64–73.
- B. Wu, A. Maleki, F. Pourfayaz, M.A. Rosen, Optimal design
of stand-alone reverse osmosis desalination driven by a
photovoltaic and diesel generator hybrid system, Sol. Energy,
163 (2018) 91–103.
- D.W. Bian, S.M. Watson, N.C. Wright, S.R. Shah, T. Buonassisi,
D. Ramanujan, I.M. Peters, A.G. Winter V, Optimization and
design of a low-cost, village-scale, photovoltaic-powered,
electrodialysis reversal desalination system for rural India,
Desalination, 452 (2019) 265–278.
- ANA, Balanço Hídrico Quantitativo, Brazilian Water Agency,
2016. Available at: http://metadados.ana.gov.br/geonetwork/srv/pt/main.home?uuid=35f247ac-b5c4-419e-9bdbdcb20defb1f4
(Accessed on 14 September 2018).
- EEA, Water Exploitation Index, European Environmental
Agency, 2017. Available at: https://www.eea.europa.eu/dataand-maps/indicators/water-exploitation-index (Accessed on
13 September 2018).
- M. Lydia, S.S. Kumar, A.I. Selvakumar, G.E. Prem Kumar,
A comprehensive review on wind turbine power curve
modeling techniques, Renewable Sustainable Energy Rev.,
30 (2014) 452–460.
- S.E. Fick, R.J. Hijmans, WorldClim 2: new 1-km spatial
resolution climate surfaces for global land areas, Int. J.
Climatol., 37 (2017) 4302–4315.
- S. Sadeghfam, Y. Hassanzadeh, A.A. Nadiri, R. Khatibi,
Mapping groundwater potential field using catastrophe
fuzzy membership functions and Jenks optimization method:
a case study of Maragheh-Bonab plain, Iran, Environ. Earth
Sci., 75 (2016) 1–19.