References

  1. X.-j. Wang, J.-y. Zhang, S. Shamsuddin, X.-h. Xia, R.-m. He, M.-t. Shang, Catastrophe theory to assess water security and adaptation strategy in the context of environmental change, Mitigation Adapt. Strategies Global Change, 19 (2012) 463–477.
  2. UN General Assembly, Transforming Our World: The 2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1, Available at: https://www.refworld.org/docid/57b6e3e44.html (Accessed 1 July 2019).
  3. FAO, AQUASTAT Website, Food and Agriculture Organization of the United Nations (FAO), 2016. Available at: http://www.fao.org/nr/water/aquastat/water_use/index.stm (Acessed 24 July 2018).
  4. M.A. Abdelkareem, M. El Haj Assad, E.T. Sayed, B. Soudan, Recent progress in the use of renewable energy sources to power water desalination plants, Desalination, 435 (2018) 97–113.
  5. A. Siddiqi, L.D. Anadon, The water–energy nexus in Middle East and North Africa, Energy Policy, 39 (2011) 4529–4540.
  6. G. Micale, A. Cipollina, L. Rizzuti, Seawater Desalination for Freshwater Production, G. Micale, L. Rizzuti, A. Cipollina, Eds., Seawater Desalination, Green Energy and Technology, Springer, Berlin, Heidelberg, 2009, pp. 1–15.
  7. S.M. Rao, P. Mamatha, Water quality in sustainable water management, Curr. Sci., 87 (2004) 942–947.
  8. Global Water Intelligence - GWI, IDA Desalination Yearbook 2017–2018, IDA -International Desalination Association, GWI, Oxford, 2017.
  9. K.S. Boden, C.V. Subban, A Road Map for Small-Scale Desalination, Oxfam International, Oxford, UK, 2018.
  10. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301–310.
  11. M.P. Shahabi, A. Mchugh, M. Anda, G. Ho, Comparative economic and environmental assessments of centralised and decentralised seawater desalination options, Desalination, 376 (2015) 25–34.
  12. S. Kuravi, J. Trahan, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos, Thermal energy storage technologies and systems for concentrating solar power plants, Prog. Energy Combust. Sci., 39 (2013) 285–319.
  13. T.T.D. Tran, A.D. Smith, Evaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector, Renewable Sustainable Energy Rev., 80 (2017) 1372–1388.
  14. S. de Sousa Medeiros, A. de Mendonça Barreto Cavalcante, A.M.P. Marin, L.B. de Melo Tinôco, I.H. Salcedo, T.F. Pinto, Sinópse do Censo Demográfico para o Semiárido Brasileiro, Instituto Nacional do Semiárido, Campina Grande – PB, 2012.
  15. International Desalination Association, Water Desalination + Reuse, Latin America: Unlocking Emerging Market Potential, UK, 2017.
  16. Global Water Intelligence - GWI, Global Water Market 2017: Meeting the World’s Water and Wastewater Needs Until 2020, GWI, Oxford, UK, 2016.
  17. Global Water Intelligence - GWI, IDA Desalination Desalination Yearbook 2015–2016, IDA - International Desalination Association, GWI, Oxford, UK, 2015.
  18. S. Loutatidou, M.O. Mavukkandy, S. Chakraborty, Introduction: What is Sustainable Desalination?, Desal. Sustainable, (2017) 1–30. doi: 10.1016/B978-0-12-809791-5.00001-8.
  19. P. Cabrera, J.A. Carta, J. González, G. Melián, Wind-driven SWRO desalination prototype with and without batteries: a performance simulation using machine learning models, Desalination, 435 (2018) 77–96.
  20. J.C. Bruno, A. Coronas, Use of Thermal Solar Energy in Distributed Small-Scale Plants for Water Desalination, Universitat Rovira i Virgili, Spain, 2010, pp. 20–27.
  21. J. Leijon, C. Boström, Freshwater production from the motion of ocean waves – A review, Desalination, 435 (2018) 161–171.
  22. S. Liyanaarachchi, L. Shu, S. Muthukumaran, V. Jegatheesan, K. Baskaran, Problems in seawater industrial desalination processes and potential sustainable solutions: a review, Rev. Environ. Sci. Biotechnol., 13 (2014) 203–214.
  23. V.G. Gude, Desalination and sustainability - An appraisal and current perspective, Water Res., 89 (2016) 87–106.
  24. A. Subramani, J.G. Jacangelo, Emerging desalination technologies for water treatment: a critical review, Water Res., 75 (2015) 164–187.
  25. A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes, Renewable Sustainable Energy Rev., 24 (2013) 343–356.
  26. A. Maleki, F. Pourfayaz, M.H. Ahmadi, Design of a cost-effective wind/photovoltaic/hydrogen energy system for supplying a desalination unit by a heuristic approach, Sol. Energy, 139 (2016) 666–675.
  27. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-water environment nexus underpinning future desalination sustainability, Desalination, 413 (2017) 52–64.
  28. H. Shemer, R. Semiat, Sustainable RO desalination – Energy demand and environmental impact, Desalination, 424 (2017) 10–16.
  29. D. Zarzo, D. Prats, Desalination and energy consumption. What can we expect in the near future?, Desalination, 427 (2018) 1–9.
  30. N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309 (2013) 197–207.
  31. N. Ghaffour, J. Bundschuh, H. Mahmoudi, M.F.A. Goosen, Renewable energy-driven desalination technologies: a comprehensive review on challenges and potential applications of integrated systems, Desalination, 356 (2015) 94–114.
  32. A.F. Ismail, M. Padaki, N. Hilal, T. Matsuura, W.J. Lau, Thin film composite membrane — recent development and future potential, Desalination, 356 (2014) 140–148.
  33. Y. Ghalavand, M.S. Hatamipour, A. Rahimi, A review on energy consumption of desalination processes, Desal. Wat. Treat, 54 (2015) 1526–1541.
  34. S. Manju, N. Sagar, Renewable energy integrated desalination: a sustainable solution to overcome future fresh-water scarcity in India, Renewable Sustainable Energy Rev., 73 (2017) 594–609.
  35. Y. Cohen, R. Semiat, A. Rahardianto, A perspective on reverse osmosis water desalination: quest for sustainability, Am. Inst. Chem. Eng. - AIChE J., 63 (2017) 1771–1784.
  36. H. Cooley, N. Ajami, Key Issues in Seawater Desalination in California: Costs and Financing, Pacific Institute, Oakland, CA, 2014.
  37. H. Cooley, N. Ajami, Key Issues for Seawater Desalination in California, N. Ajami, Ed., The World’s Water, Washington, D.C., 2014. doi: 10.5822/978-1-61091-483-3_6.
  38. A. Alkaisi, R. Mossad, A. Sharifian-Barforoush, A review of the water desalination systems integrated with renewable energy, Energy Procedia, 110 (2017) 268–274.
  39. U. Ezzeghni, Optimization study of Alwaha BWRO plant for minimum water cost prediction, in: 2018: pp. 0–10.
  40. M.A. Alghoul, P. Poovanaesvaran, K. Sopian, M.Y. Sulaiman, Review of brackish water reverse osmosis (BWRO) system designs, Renewable Sustainable Energy Rev., 13 (2009) 2661–2667.
  41. J. Stanton, J.H. Lienhard, Y.D. Ahdab, G.P. Thiel, J.K. Böhlke, Minimum energy requirements for desalination of brackish groundwater in the United States with comparison to international datasets, Water Res., 141 (2018) 387–404.
  42. A. Bennett, 50th Anniversary: Desalination: 50 years of progress, Filtr. Sep., 50 (2013) 32–39.
  43. A. Zhu, P.D. Christofides, Y. Cohen, On RO membrane and energy costs and associated incentives for future enhancements of membrane permeability, J. Membr. Sci., 344 (2009) 1–5.
  44. M. Wilf, S. Alt, Application of low fouling RO membrane elements for reclamation of municipal wastewater, Desalination, 132 (2000) 11–19.
  45. M. Li, Reducing specific energy consumption in reverse osmosis (RO) water desalination: an analysis from first principles, Desalination, 276 (2011) 128–135.
  46. L. Song, J.Y. Hu, S.L. Ong, W.J. Ng, M. Elimelech, M. Wilf, Emergence of thermodynamic restriction and its implications for full-scale reverse osmosis processes, Desalination, 155 (2003) 213–228.
  47. T.H. Chong, S.-L. Loo, A.G. Fane, W.B. Krantz, Energy-efficient reverse osmosis desalination: effect of retentate recycle and pump and energy recovery device efficiencies, Desalination, 366 (2015) 15–31.
  48. B. Peñate, L. García-Rodríguez, Energy optimisation of existing SWRO (seawater reverse osmosis) plants with ERT (energy recovery turbines): technical and thermoeconomic assessment, Energy, 36 (2011) 613–626.
  49. V.G. Gude, Energy consumption and recovery in reverse osmosis, Desal. Wat. Treat., 36 (2011) 239–260.
  50. C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination, 216 (2007) 1–76.
  51. N.M. Eshoul, B. Agnew, A. Anderson, M.S. Atab, Exergetic and economic analysis of two-pass RO desalination proposed plant for domestic water and irrigation, Energy, 122 (2017) 319–328.
  52. The Spanish Ministry of Agriculture, ACUAMED – The Spanish Approach – The Public Corporation Model, in: Reg. Mediterr. Work. Desalination, Non Revenue Water Reduct. Public-Private Partnersh. under Water Scarcity, World Bank, Marseilles – France, 2016: pp. 2–20. Available at: https://www.cmimarseille.org/sites/default/files/newsite/library/files/en/2.7. F. Lopez Unzu_The Spanish institutional approach for desalination – thepublic corporation model_0.pdf.
  53. A. Bennett, Cost effective desalination: innovation continues to lower desalination costs, Filtr. Sep., 48 (2011) 24–27.
  54. N. Voutchkov, Desalination – Past, Present and Future, in: IDA International Conference on Water Reuse and Recycling: Turning Vision into Reality, IDA - International Desalination Association, Nice, France, 2016, pp. 25–27.
  55. B. Sauvet-Goichon, Ashkelon desalination plant — A successful challenge, Desalination, 203 (2007) 75–81.
  56. I.C. Karagiannis, P.G. Soldatos, Water desalination cost literature: review and assessment, Desalination, 223 (2008) 448–456.
  57. IBGE, Censo Demográfico, Censo Demográfico, Brazilian Institute of Geography and Statistics, Brasília, Brasil, 2010. Available at: https://ww2.ibge.gov.br/home/estatistica/populacao/censo2010/default.shtm (Accessed on 25 July 2018).
  58. IBGE - Brazilian Institute of Geography and Statistics, “Geoestatísticas” Revelam Patrimônio Ambiental da Amazônia Legal, Censo 2010, Brasília, Brasil, 2011. Available at: https://censo2010.ibge. gov.br/noticias-censo.html?busca=1&id=1&idnoticia=1887&t=geoestatisticas-revelam-patrimonio-ambientalamazonialegal&view=noticia (Accessed 31 July 2018).
  59. ANA, Conjuntura dos Recursos Hídricos, Brazilian Water Agency, Brasília, Brasil, 2017. Available at: http://www.snirh.gov.br/portal/snirh/centrais-de-conteudos/conjuntura-dosrecursos-hidricos/conj2017_rel-1.pdf (Accessed 02 August 2018).
  60. Brasil, Brazilian Water Act, law 9433/1997, Repub. Fed. Brazil, 1997. Available at: http://www.planalto.gov.br/CCivil_03/Leis/L9433.htm (Accessed on 25 July 2018).
  61. Ministério das Cidades, SNIS - Série Histórica, Sist. Nac. Informações Sobre Saneam, Brasília, Brasil, 2015. Available at: http://app3.cidades.gov.br/serieHistorica/ (Accessed 25 July 2018).
  62. WHO, How Much Water is Needed in Emergencies, World Health Organization, Geneva, Switzerland, 2013. Available at: https://www.who.int/water_sanitation_health/publications/2011/tn9_how_much_water_en.pdf (Accessed 15 August 2018).
  63. ANEEL, Capacidade de Geração do Brasil, BIG - Banco deInformações de Geração. Brasília, Brasil, 2018. Available at: http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm (Accessed 1 January 2018).
  64. A. Ferreira, S.S. Kunh, K.C. Fagnani, T.A. De Souza, C. Tonezer, G.R. Dos Santos, C.H. Coimbra-Araújo, Economic overview of the use and production of photovoltaic solar energy in brazil, Renewable Sustainable Energy Rev., 81 (2018) 181–191.
  65. ANEEL, Leilão de geração “A-4” termina com deságio de 59,07%, Agência Nacional de Energia Elétrica. Brasília, Brasil, 2018. Available at: http://www.aneel.gov.br/sala-deimprensa-exibicao/-/asset_publisher/XGPXSqdMFHrE/content/leilao-de-geracao-a-4-termina-com-desagio-de-59-07-/656877?inheritRedirect=false (Accessed 8 February 2018).
  66. CEPEL, Atlas Eólico Brasileiro - Simulações 2013, Eletrobrás Electric Power Research Center, Rio de Janeiro, Brasil, 2013. Available at: http://novoatlas.cepel.br/index.php/mapas-tematicos/(Accessed 13 September 2018).
  67. E.B. Pereira, F.R. Martins, A.R. Gonçalves, R.S. Costa, F.J.L. de Lima, R. Rüther, S.L. de Abreu, G.M. Tiepolo, S.V. Pereira, J.G. Souza, Atlas Brasileiro de Energia Solar, 2nd ed., INPE, São José dos Campos, 2017.
  68. BRASIL, Programa Água Doce, MMA, Brasília, DF, 2012. Available at: http://www.mma.gov.br/publicacoes/agua/category/41-agua-doce?download=986:programa-agua-docedocumento-base-2012.
  69. MMA, Água Doce, Programa Água Doce, Ministry of the Environment, Brasília, Brasil, 2018. Available at: http://www.mma.gov.br/agua/agua-doce (Accessed 25 July 2018).
  70. R.S. Ferreira, H.P. Veiga, R.G.B. dos Santos, A. Saia, S.C. Rodrigues, A.F.M. Bezerra, L.C. Hermes, A. Moura, L.H. Cunha, Empowering Brazilian northeast rural communities to desalinated drinking water access: Programa Água Doce, International Desalination Association World Congress, IDA - International Desalination Association, São Paulo, Brazil, 2017, pp. 1–13.
  71. Interview taken in the IDA 2017 World Congress on Water Reuse and Desalination, São Paulo, Brazil.
  72. J. Liu, S. Chen, H. Wang, X. Chen, Calculation of carbon footprints for water diversion and desalination projects, Energy Procedia, 75 (2015) 2483–2494.
  73. World Bank, Renewable Energy Desalination: An Emerging Solution to Close the Water Gap in the Middle East and North Africa, The World Bank, Washington, D.C., 2012.
  74. O. Ellabban, H. Abu-Rub, F. Blaabjerg, Renewable energy resources: Current status, future prospects and their enabling technology, Renewable Sustainable Energy Rev., 39 (2014) 748–764.
  75. I. Khamis, K.C. Kavvadias, Nuclear desalination: Practical measures to prevent pathways of contamination, Desalination, 321 (2013) 55–59.
  76. J.A. Carta, J. González, C. Gómez, Operating results of a wind–diesel system which supplies the full energy needs of an isolated village community in the Canary Islands, Sol. Energy, 74 (2003) 53–63.
  77. M. Gökçek, Integration of hybrid power (wind-photovoltaic diesel-battery) and seawater reverse osmosis systems for small-scale desalination applications, Desalination, 435 (2018) 210–220.
  78. M.F.A. Goosen, H. Mahmoudi, N. Ghaffour, J. Bundschuh, Y. Al Yousef, A critical evaluation of renewable energy technologies for desalination, Appl. Mater. Sci. Environ. Mater., Phuket Island, Thailand (2016) 233–258.
  79. J. Bundschuh, J. Hoinkis, Addressing Freshwater Shortage with Renewable Energies, CRC Press, 2012.
  80. M. Shatat, M. Worall, S. Riffat, Opportunities for solar water desalination worldwide: review, Sustainable Cities Soc., 9 (2013) 67–80.
  81. M.A. Eltawil, Z. Zhengming, L. Yuan, Renewable Energy Powered Desalination Systems: Technologies and Economics-State of the Art, Twelfth International Water Technology Conference, Alexandria, Egypt, 2008, pp. 1–38. Available at: http://iwtc.info/wp-content/uploads/2010/09/RENEWABLE-ENERGYPOWERED-DESALINATION-SYSTEMS.-TECHNOLOGIESAND-ECONOMICS-STATE-OF-THE-ART.pdf (Accessed 08 August 2018).
  82. M. Moser, F. Trieb, T. Fichter, J. Kern, Renewable desalination: a methodology for cost comparison, Stuttgart, Germany, Desal. Wat. Treat., 51 (2013) 1171–1189.
  83. M. Papapetrou, M. Wieghaus, C. Biercamp, Roadmap for the Development of Desalination Powered by Renewable Energy, PRODES Project, 2010, p. 79. Available at: http://www.prodesproject.org/fileadmin/Files/ProDes_Road_map_on_line_version.pdf.
  84. M.A. Darwish, H.K. Abdulrahim, A.S. Hassan, A.A. Mabrouk, PV and CSP solar technologies and desalination: economic analysis, Desal. Wat. Treat., 57 (2016) 16679–16702.
  85. W.D. Childs, A.E. Dabiri, H.A. Al-Hinai, H.A. Abdullah, VARI-RO solar-powered desalting technology, Desalination, 125 (1999) 155–166.
  86. C. Li, Y. Goswami, E. Stefanakos, Solar assisted sea water desalination: a review, Renewable Sustainable Energy Rev., 19 (2013) 136–163.
  87. H. Sharon, K.S. Reddy, A review of solar energy driven desalination technologies, Renewable Sustainable Energy Rev., 41 (2015) 1080–1118.
  88. A.F. Mashaly, A.A. Alazba, A.M. Al-Awaadh, Assessing the performance of solar desalination system to approach near-ZLD under hyper arid environment, Desal. Wat. Treat., 57 (2016) 12019–12036.
  89. A. Cipollina, E. Tzen, V. Subiela, M. Papapetrou, J. Koschikowski, R. Schwantes, M. Wieghaus, G. Zaragoza, Renewable energy desalination: performance analysis and operating data of existing RES desalination plants, Desal. Wat. Treat., 55 (2015) 3120–3140.
  90. L. García-Rodríguez, Solar Desalination for the 21st Century, L. Rizzuti, H.M. Ettouney, A. Cipollina, Eds., NATO Security through Science Series C:, Springer, Dordrecht, 2007, pp. 355–369.
  91. M.T. Ali, H.E.S. Fath, P.R. Armstrong, A comprehensive technoeconomical review of indirect solar desalination, Renewable Sustainable Energy Rev., 15 (2011) 4187–4199.
  92. H. Vyas, K. Suthar, M. Chauhan, R. Jani, P. Bapat, P. Patel, B. Markam, S. Maiti, Modus operandi for maximizing energy efficiency and increasing permeate flux of community scale solar powered reverse osmosis systems, Energy Convers. Manage., 103 (2015) 94–103.
  93. A.I. Schäfer, A. Broeckmann, B.S. Richards, Renewable energy powered membrane technology. 1. Development and characterization of a photovoltaic hybrid membrane system, Environ. Sci. Technol., 41 (2007) 998–1003.
  94. D. Manolakos, E. Sh. Mohamed, I. Karagiannis, G. Papadakis, Technical and economic comparison between PV-RO system and RO-Solar Rankine system. Case study: Thirasia island, Desalination, 221 (2008) 37–46.
  95. E. Sh. Mohamed, G. Papadakis, E. Mathioulakis, V. Belessiotis, A direct coupled photovoltaic seawater reverse osmosis desalination system toward battery based systems — a technical and economical experimental comparative study, Desalination, 221 (2008) 17–22.
  96. B.S. Richards, L. Masson, A.I. Schäfer, Impact of Feedwater Salinity on Energy Requirements of a Small-Scale Membrane Filtration System, E.K. Yanful, Ed., Appropriate Technologies for Environmental Protection in the Developing World, Springer, Ghana, Africa, 2009, pp. 123–137.
  97. B.S. Richards, D.P.S. Capao, A.I. Schafer, Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system, Environ. Sci. Technol., 42 (2008) 4563–4569.
  98. D.B. Riffel, P.C.M. Carvalho, Small-scale photovoltaicpowered reverse osmosis plant without batteries: design and simulation, Desalination, 247 (2009) 378–389.
  99. S. Dallas, N. Sumiyoshi, J. Kirk, K. Mathew, N. Wilmot, Efficiency analysis of the Solarflow – an innovative solarpowered desalination unit for treating brackish water, Renewable Energy, 34 (2009) 397–400.
  100. M. Khayet, M. Essalhi, C. Armenta-Déu, C. Cojocaru, N. Hilal, Optimization of solar-powered reverse osmosis desalination pilot plant using response surface methodology, Desalination, 261 (2010) 284–292.
  101. L.A. Richards, B.S. Richards, A.I. Schäfer, Renewable energy powered membrane technology: salt and inorganic contaminant removal by nanofiltration/reverse osmosis, J. Membr. Sci., 369 (2011) 188–195.
  102. F. Banat, H. Qiblawey, Q. Al-Nasser, Design and operation of small-scale photovoltaic-driven reverse osmosis (PV-RO) desalination plant for water supply in rural areas, Comput. Water, Energy, Environ. Eng., 1 (2012) 31–36.
  103. M.A. Alghoul, P. Poovanaesvaran, M.H. Mohammed, A.M. Fadhil, A.F. Muftah, M.M. Alkilani, K. Sopian, Design and experimental performance of brackish water reverse osmosis desalination unit powered by 2 kW photovoltaic system, Renewable Energy, 93 (2016) 101–114. Available at: https://doi.org/10.1016/j.renene.2016.02.015 (Accessed 10 July 2018).
  104. M. Kumaravel, K. Sulochana, R. Gopalaswami, G. Saravanan, Solar Photo Voltaics Powered Seawater Desalination Plants and their Techno-Economics, Proceedings of ISES World Congress 2007, 2007, pp. 1402–1408.
  105. A.M. Helal, S.A. Al-Malek, E.S. Al-Katheeri, Economic feasibility of alternative designs of a PV-RO desalination unit for remote areas in the United Arab Emirates, Desalination, 221 (2008) 1–16.
  106. H.Ş. Aybar, J.S. Akhatov, N.R. Avezova, A.S. Halimov, Solar powered RO desalination: investigations on pilot project of PV powered RO desalination system, Appl. Sol. Energy, 46 (2010) 275–284.
  107. H. Cherif, J. Belhadj, Large-scale time evaluation for energy estimation of stand-alone hybrid photovoltaic–wind system feeding a reverse osmosis desalination unit, Energy, 36 (2011) 6058–6067.
  108. F.H. Fahmy, N.M. Ahmed, H.M. Farghally, Optimization of renewable energy power system for small scale brackish reverse osmosis desalination unit and a tourism motel in Egypt, Smart Grid Renewable Energy, 3 (2012) 43–50.
  109. S. Kumarasamy, S. Narasimhan, S. Narasimhan, Optimal operation of battery-less solar powered reverse osmosis plant for desalination, Desalination, 375 (2015) 89–99.
  110. M.A. Jones, I. Odeh, M. Haddad, A.H. Mohammad, J.C. Quinn, Economic analysis of photovoltaic (PV) powered water pumping and desalination without energy storage for agriculture, Desalination, 387 (2016) 35–45.
  111. K. Mousa, A. Diabat, H. Fath, Optimal design of a hybrid solar-wind power to drive a small-size reverse osmosis desalination plant, Desal. Wat. Treat., 51 (2013) 3417–3427.
  112. H.A. Shawky, A.A. Abdel Fatah, M.M.S. Abo ElFadl, A.H.M. El-Aassar, Design of a small mobile PV-driven RO water desalination plant to be deployed at the northwest coast of Egypt, Desal. Wat. Treat., 55 (2015) 3755–3766.
  113. M. Lei, L. Shiyan, J. Chuanwen, L. Hongling, Z. Yan, A review on the forecasting of wind speed and generated power, Renewable Sustainable Energy Rev., 13 (2009) 915–920.
  114. M.A. Schilling, M. Esmundo, Technology S-curves in renewable energy alternatives: analysis and implications for industry and government, Energy Policy, 37 (2009) 1767–1781.
  115. Q. Ma, H. Lu, Wind energy technologies integrated with desalination systems: review and state-of-the-art, Desalination, 277 (2011) 274–280. doi: 10.1016/j.desal.2011.04.041.
  116. ANEEL, Resultados de Leilões. Brasília, Brasil, 2018. Available at:http://www.aneel.gov.br/resultados-de-leiloes (Accessed 10 September 2018).
  117. World Economic Forum, These Countries Produce the Most Biofuels, World Economic Forum, 2018. Available at: https://www.weforum.org/agenda/2015/11/these-countries-produce-the-most-biofuels/ (Accessed on 11 September 2018).
  118. J. Shen, A. Jeihanipour, B.S. Richards, A.I. Schäfer, Renewable energy powered membrane technology: experimental investigation of system performance with variable module size and fluctuating energy, Sep. Purif. Technol., 221 (2019) 64–73.
  119. B. Wu, A. Maleki, F. Pourfayaz, M.A. Rosen, Optimal design of stand-alone reverse osmosis desalination driven by a photovoltaic and diesel generator hybrid system, Sol. Energy, 163 (2018) 91–103.
  120. D.W. Bian, S.M. Watson, N.C. Wright, S.R. Shah, T. Buonassisi, D. Ramanujan, I.M. Peters, A.G. Winter V, Optimization and design of a low-cost, village-scale, photovoltaic-powered, electrodialysis reversal desalination system for rural India, Desalination, 452 (2019) 265–278.
  121. ANA, Balanço Hídrico Quantitativo, Brazilian Water Agency, 2016. Available at: http://metadados.ana.gov.br/geonetwork/srv/pt/main.home?uuid=35f247ac-b5c4-419e-9bdbdcb20defb1f4 (Accessed on 14 September 2018).
  122. EEA, Water Exploitation Index, European Environmental Agency, 2017. Available at: https://www.eea.europa.eu/dataand-maps/indicators/water-exploitation-index (Accessed on 13 September 2018).
  123. M. Lydia, S.S. Kumar, A.I. Selvakumar, G.E. Prem Kumar, A comprehensive review on wind turbine power curve modeling techniques, Renewable Sustainable Energy Rev., 30 (2014) 452–460.
  124. S.E. Fick, R.J. Hijmans, WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37 (2017) 4302–4315.
  125. S. Sadeghfam, Y. Hassanzadeh, A.A. Nadiri, R. Khatibi, Mapping groundwater potential field using catastrophe fuzzy membership functions and Jenks optimization method: a case study of Maragheh-Bonab plain, Iran, Environ. Earth Sci., 75 (2016) 1–19.