References

  1. Y. Li, Z. Jin, T. Li, Z. Xiu, One-step synthesis and characterization of core-shell Fe@SiO2 nanocomposite for Cr(VI) reduction, Sci. Total Environ., 421–422 (2012) 260–266.
  2. S. Sforzini, M.N. Moore, Z. Mou, M. Boeri, M. Banni, A. Viarengo, Mode of action of Cr(VI) in immunocytes of earthworms: implications for animal health, Ecotox. Environ. Saf., 138 (2017) 298–308.
  3. A. Ertani, A. Mietto, M. Borin, S. Nardi, Chromium in agricultural soils and crops: a review, Water Air Soil Pollut., 228 (2017) 190.
  4. G. Rojas, J. Silva, J.A. Flores, A. Rodriguez, M. Ly, H. Maldonado, Adsorption of chromium onto cross-linked chitosan, Sep. Purif. Technol., 44 (2005) 31–36.
  5. K.K. Krishnani, S. Ayyappan, Heavy metals remediation of water using plants and lignocellulosic agrowastes, Rev. Environ. Contam. Toxicol., 188 (2006) 59–84.
  6. P. Miretzky, A.F. Cirelli, Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review, J. Hazard. Mater., 180 (2010) 1–19.
  7. Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review, Environ. Sci. Technol., 50 (2016) 7290–7304.
  8. M. Stefaniuk, P. Oleszczuk, Y.S. Ok, Review on nano zerovalent iron (nZVI): from synthesis to environmental applications, Chem. Eng. J., 287 (2016) 618–632.
  9. X. Guan, Y. Sun, H. Qin, J. Li, I. Lo, D. He, H. Dong, The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014), Water Res., 75 (2015) 224–248.
  10. T. Tosco, M.P. Papini, C.C. Viggi, R. Sethi, Nanoscale zerovalent iron particles for groundwater remediation: a review, J. Cleaner Prod., 77 (2014) 10–21.
  11. L. Shi, Y. Lin, X. Zhang, Z. Chen, X. Zhang, Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution, Chem. Eng. J., 171 (2011) 612–617.
  12. K. Xiong, Y. Gao, L. Zhou, X. Zhang, Zero-valent iron particles embedded on the mesoporous silica–carbon for chromium (VI) removal from aqueous solution, J. Nanopart. Res., 18 (2016) 267.
  13. C. Xu, L. Zhu, X. Wang, S. Lin, Y. Chen, Fast and highly efficient removal of chromate from aqueous solution using nanoscale zero-valent iron/activated carbon (NZVI/AC), Water Air Soil Pollut., 225 (2014) 1–13.
  14. P. Santander, D. Morales, B.L. Rivas, N. Kabay, I. Ipek, Ö. Kuşkum, M. Yuksel, M. Bryjak, Removal of Cr(VI) from aqueous solution by a highly efficient chelating resin, Polym. Bull., 74 (2017) 2033–2044.
  15. S.Wang, Y. Zhou, B. Gao, X. Wang, X. Yin, K. Feng, J. Wang, The sorptive and reductive capacities of biochar supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size, Chemosphere, 186 (2017) 495–500.
  16. F. Fu, J. Ma, L. Xie, B. Tang, W. Han, S. Lin, Chromium removal using resin supported nanoscale zero-valent iron, J. Environ. Manage., 128 (2013) 822–827.
  17. A. Toli, K. Chalastara, C. Mystrioti, A. Xenidis, N. Papassiopi, Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters, Environ. Pollut., 214 (2016) 419–429.
  18. A. Toli, A. Varouxaki, C. Mystrioti, A. Xenidis, N. Papassiopi, Green Synthesis of resin supported nanoiron and evaluation of efficiency for the remediation of Cr(VI) contaminated groundwater by batch tests, Bull. Environ. Contam. Toxicol., 101 (2018) 711–717.
  19. Z. Jiang, S. Zhang, B. Pan, W. Wang, X. Wang, L. Lv, A fabrication strategy for nanosized zero valent iron (nZVI)-polymeric anion exchanger composites with tunable structure for nitrate reduction, J. Hazard. Mater., 233–234 (2012) 1–6.
  20. D. Gašparovičová, M. Králik, M. Hronec, A. Biffis, M. Zecca, B. Corain, Reduction of nitrates dissolved in water over palladiumcopper catalysts supported on a strong cationic resin, J. Mol. Catal. A-Chem., 244 (1983) 258–266.
  21. Y. Xie, S. Zhang, B. Pan, L. Lv, W. Zhang, Effect of CdS distribution on the photocatalytic performance of resin-CdS nanocomposites, Chem. Eng. J., 174 (2011) 351–356.
  22. Q. Du, S. Zhang, B. Pan, L. Lv, W. Zhang, Q. Zhang, Effect of spatial distribution and aging of ZVI on the reactivity of resin–ZVI composites for arsenite removal, J. Mater. Sci., 49 (2014) 7073–7079.
  23. Q. Du, L. Zhou, S. Zhang, B. Pan, L. Lv, W. Zhang, Q. Zhang, Iron-mediated oxidation of arsenic(III) by oxygen and hydrogen peroxide: dispersed versus resin-supported zero-valent iron, J. Colloid Interface Sci., 428 (2014) 179–184.
  24. Editorial Board of Water and Wastewater Monitoring and Analysis Method of China Environmental Protection Administration, Water and Wastewater Monitoring and Analysis Method, 4th ed., China Environmental Science Press, China, 2002.
  25. Y. Sun, X. Li, W. Zhang, H. Wang, A method for the preparation of stable dispersion of zero-valent iron nanoparticles, Colloid Surf. A-Physicochem. Eng. Asp., 308 (2007) 60–66.
  26. Y. Sun, X. Li, J. Cao, W. Zhang, H.P. Wang, Characterization of zero-valent iron nanoparticles, Adv. Colloid Interface Sci., 120 (2006) 47–56.
  27. B.A. Till, L.J. Weathers, P.J.J. Alvarez, Fe(0)-supported autotrophic denitrification, Environ. Sci. Technol., 32 (1998) 634–639.
  28. R.M. Cornell, U. Schwertmann, The iron oxides: structure, properties, reactions, occurrence and uses, Mineral. Mag., 61 (1997) 740–741.
  29. Y. Liu, T. Phenrat, G.V. Lowry, Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution, Environ. Sci. Technol., 41 (2007) 7881.
  30. B.C. Reinsch, B. Forsberg, R.L. Penn, C. Kim, G.V. Lowry, Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents, Environ. Sci. Technol., 44 (2010) 3455.
  31. C. Le, J.H. Wu, S.B. Deng, P. Li, X.D. Wang, N. Zhu, P. Wu, Effects of common dissolved anions on the reduction of parachloronitrobenzene by zero-valent iron in groundwater, Water Sci. Technol., 63 (2011) 1485–1490.
  32. T. Kohn, A.L. Roberts, The effect of silica on the degradation of organohalides in granular iron columns, J. Contam. Hydrol., 83 (2006) 70–88.
  33. C. Su, R. Puls, Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate, Environ. Sci. Technol., 38 (2004) 2715–2720.
  34. B. Song, P. Xu, G. Zeng, J. Gong, X. Wang, J. Yan, S. Wang, P. Zhang, W. Cao, S. Ye, Modeling the transport of sodium dodecyl benzene sulfonate in riverine sediment in the presence of multi-walled carbon nanotubes, Water Res., 129 (2018) 20–28.
  35. S.S. Poguberović, D.M. Krcmar, S.P. Maletić, Z. Kónya, D. Tomasevic, D.V. Kerkez, S.D. Rončević, Removal of As(III) and Cr(VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts, Ecol. Eng., 90 (2016) 42–49.
  36. X. Lv, Y. Hu, J. Tang, T. Sheng, G. Jiang, X. Xu, Effects of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero valent iron (nZVI)-Fe3O4 nanocomposites, Chem. Eng. J., 218 (2013) 55–64.
  37. D. Chang, T. Chen, H. Liu, Y. Xi, C. Qing, Q. Xie, R.L. Frostc, A new approach to prepare ZVI and its application in removal of Cr(VI) from aqueous solution, Chem. Eng. J., 244 (2014) 264–272.
  38. R. Fu, X. Zhang, Z. Xu, X. Guo, D. Bi, W. Zhang, Fast and highly efficient removal of chromium (VI) using humus-supported nanoscale zero-valent iron: Influencing factors, kinetics and mechanism, Sep. Purif. Technol., 174 (2017) 362–371.
  39. L. Xu, J. Wang, Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol, Environ. Sci. Technol., 46 (2017) 10145–10153.
  40. N. Sleiman, V. Deluchat, M. Wazne, M. Mallet, A. Courtin-Nomade, V. Kazpard, M. Baudu, A. Courtin-Nomade, V. Kazpard, Phosphate removal from aqueous solution using ZVI/sand bed reactor: behavior and mechanism, Water Res., 99 (2016) 56–65.
  41. Z. Fang, X. Qiu, R. Huang, X. Qiu, M. Li, Removal of chromium in electroplating wastewater by nanoscale zero-valent metal with synergistic effect of reduction and immobilization, Desalination, 280 (2011) 224–231.
  42. K. Nagata, R. Nishiwak, Y. Nakamura, T. Maruyama, Kinetic mechanisms of the formations of MgCr2O4 and FeCr2O4 spinels from their metal oxides, Solid State Ion., 49 (1991) 161–166.