References
- Y. Li, Z. Jin, T. Li, Z. Xiu, One-step synthesis and characterization
of core-shell Fe@SiO2 nanocomposite for Cr(VI) reduction,
Sci. Total Environ., 421–422 (2012) 260–266.
- S. Sforzini, M.N. Moore, Z. Mou, M. Boeri, M. Banni, A. Viarengo,
Mode of action of Cr(VI) in immunocytes of earthworms:
implications for animal health, Ecotox. Environ. Saf., 138 (2017)
298–308.
- A. Ertani, A. Mietto, M. Borin, S. Nardi, Chromium in agricultural
soils and crops: a review, Water Air Soil Pollut.,
228 (2017) 190.
- G. Rojas, J. Silva, J.A. Flores, A. Rodriguez, M. Ly, H. Maldonado,
Adsorption of chromium onto cross-linked chitosan, Sep. Purif.
Technol., 44 (2005) 31–36.
- K.K. Krishnani, S. Ayyappan, Heavy metals remediation of
water using plants and lignocellulosic agrowastes, Rev. Environ.
Contam. Toxicol., 188 (2006) 59–84.
- P. Miretzky, A.F. Cirelli, Cr(VI) and Cr(III) removal from
aqueous solution by raw and modified lignocellulosic materials:
a review, J. Hazard. Mater., 180 (2010) 1–19.
- Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat,
X. Wang, Environmental remediation and application of nanoscale
zero-valent iron and its composites for the removal of
heavy metal ions: a review, Environ. Sci. Technol., 50 (2016)
7290–7304.
- M. Stefaniuk, P. Oleszczuk, Y.S. Ok, Review on nano zerovalent
iron (nZVI): from synthesis to environmental applications,
Chem. Eng. J., 287 (2016) 618–632.
- X. Guan, Y. Sun, H. Qin, J. Li, I. Lo, D. He, H. Dong, The limitations
of applying zero-valent iron technology in contaminants sequestration
and the corresponding countermeasures: the
development
in zero-valent iron technology in the last two
decades (1994–2014), Water Res., 75 (2015) 224–248.
- T. Tosco, M.P. Papini, C.C. Viggi, R. Sethi, Nanoscale zerovalent
iron particles for groundwater remediation: a review, J. Cleaner
Prod., 77 (2014) 10–21.
- L. Shi, Y. Lin, X. Zhang, Z. Chen, X. Zhang, Synthesis, characterization
and kinetics of bentonite supported nZVI for
the removal of Cr(VI) from aqueous solution, Chem. Eng. J.,
171 (2011) 612–617.
- K. Xiong, Y. Gao, L. Zhou, X. Zhang, Zero-valent iron particles
embedded on the mesoporous silica–carbon for chromium (VI)
removal from aqueous solution, J. Nanopart. Res., 18 (2016) 267.
- C. Xu, L. Zhu, X. Wang, S. Lin, Y. Chen, Fast and highly efficient
removal of chromate from aqueous solution using nanoscale
zero-valent iron/activated carbon (NZVI/AC), Water Air Soil
Pollut., 225 (2014) 1–13.
- P. Santander, D. Morales, B.L. Rivas, N. Kabay, I. Ipek,
Ö. Kuşkum, M. Yuksel, M. Bryjak, Removal of Cr(VI) from
aqueous solution by a highly efficient chelating resin, Polym.
Bull., 74 (2017) 2033–2044.
- S.Wang, Y. Zhou, B. Gao, X. Wang, X. Yin, K. Feng, J. Wang,
The sorptive and reductive capacities of biochar supported
nanoscaled zero-valent iron (nZVI) in relation to its crystallite
size, Chemosphere, 186 (2017) 495–500.
- F. Fu, J. Ma, L. Xie, B. Tang, W. Han, S. Lin, Chromium removal
using resin supported nanoscale zero-valent iron, J. Environ.
Manage., 128 (2013) 822–827.
- A. Toli, K. Chalastara, C. Mystrioti, A. Xenidis, N. Papassiopi,
Incorporation of zero valent iron nanoparticles in the matrix
of cationic resin beads for the remediation of Cr(VI) contaminated
waters, Environ. Pollut., 214 (2016) 419–429.
- A. Toli, A. Varouxaki, C. Mystrioti, A. Xenidis, N. Papassiopi,
Green Synthesis of resin supported nanoiron and evaluation
of efficiency for the remediation of Cr(VI) contaminated
groundwater by batch tests, Bull. Environ. Contam. Toxicol.,
101 (2018) 711–717.
- Z. Jiang, S. Zhang, B. Pan, W. Wang, X. Wang, L. Lv, A fabrication
strategy for nanosized zero valent iron (nZVI)-polymeric
anion exchanger composites with tunable structure for nitrate
reduction, J. Hazard. Mater., 233–234 (2012) 1–6.
- D. Gašparovičová, M. Králik, M. Hronec, A. Biffis, M. Zecca,
B. Corain, Reduction of nitrates dissolved in water over palladiumcopper
catalysts supported on a strong cationic resin, J. Mol.
Catal. A-Chem., 244 (1983) 258–266.
- Y. Xie, S. Zhang, B. Pan, L. Lv, W. Zhang, Effect of CdS
distribution on the photocatalytic performance of resin-CdS
nanocomposites, Chem. Eng. J., 174 (2011) 351–356.
- Q. Du, S. Zhang, B. Pan, L. Lv, W. Zhang, Q. Zhang, Effect of
spatial distribution and aging of ZVI on the reactivity of resin–ZVI composites for arsenite removal, J. Mater. Sci., 49 (2014)
7073–7079.
- Q. Du, L. Zhou, S. Zhang, B. Pan, L. Lv, W. Zhang, Q. Zhang,
Iron-mediated oxidation of arsenic(III) by oxygen and hydrogen
peroxide: dispersed versus resin-supported zero-valent iron,
J. Colloid Interface Sci., 428 (2014) 179–184.
- Editorial Board of Water and Wastewater Monitoring and
Analysis Method of China Environmental Protection Administration,
Water and Wastewater Monitoring and Analysis
Method, 4th ed., China Environmental Science Press, China, 2002.
- Y. Sun, X. Li, W. Zhang, H. Wang, A method for the preparation
of stable dispersion of zero-valent iron nanoparticles, Colloid
Surf. A-Physicochem. Eng. Asp., 308 (2007) 60–66.
- Y. Sun, X. Li, J. Cao, W. Zhang, H.P. Wang, Characterization
of zero-valent iron nanoparticles, Adv. Colloid Interface Sci.,
120 (2006) 47–56.
- B.A. Till, L.J. Weathers, P.J.J. Alvarez, Fe(0)-supported autotrophic
denitrification, Environ. Sci. Technol., 32 (1998) 634–639.
- R.M. Cornell, U. Schwertmann, The iron oxides: structure,
properties, reactions, occurrence and uses, Mineral. Mag.,
61 (1997) 740–741.
- Y. Liu, T. Phenrat, G.V. Lowry, Effect of TCE concentration
and dissolved groundwater solutes on NZVI-promoted TCE
dechlorination and H2 evolution, Environ. Sci. Technol., 41 (2007)
7881.
- B.C. Reinsch, B. Forsberg, R.L. Penn, C. Kim, G.V. Lowry,
Chemical transformations during aging of zerovalent iron
nanoparticles in the presence of common groundwater dissolved
constituents, Environ. Sci. Technol., 44 (2010) 3455.
- C. Le, J.H. Wu, S.B. Deng, P. Li, X.D. Wang, N. Zhu, P. Wu,
Effects of common dissolved anions on the reduction of parachloronitrobenzene
by zero-valent iron in groundwater, Water
Sci. Technol., 63 (2011) 1485–1490.
- T. Kohn, A.L. Roberts, The effect of silica on the degradation
of organohalides in granular iron columns, J. Contam. Hydrol.,
83 (2006) 70–88.
- C. Su, R. Puls, Nitrate reduction by zerovalent iron: effects of
formate, oxalate, citrate, chloride, sulfate, borate, and phosphate,
Environ. Sci. Technol., 38 (2004) 2715–2720.
- B. Song, P. Xu, G. Zeng, J. Gong, X. Wang, J. Yan, S. Wang,
P. Zhang, W. Cao, S. Ye, Modeling the transport of sodium
dodecyl benzene sulfonate in riverine sediment in the presence
of multi-walled carbon nanotubes, Water Res., 129 (2018) 20–28.
- S.S. Poguberović, D.M. Krcmar, S.P. Maletić, Z. Kónya,
D. Tomasevic, D.V. Kerkez, S.D. Rončević, Removal of As(III)
and Cr(VI) from aqueous solutions using “green” zero-valent
iron nanoparticles produced by oak, mulberry and cherry leaf
extracts, Ecol. Eng., 90 (2016) 42–49.
- X. Lv, Y. Hu, J. Tang, T. Sheng, G. Jiang, X. Xu, Effects of
co-existing ions and natural organic matter on removal of
chromium (VI) from aqueous solution by nanoscale zero
valent iron (nZVI)-Fe3O4 nanocomposites, Chem. Eng. J., 218
(2013) 55–64.
- D. Chang, T. Chen, H. Liu, Y. Xi, C. Qing, Q. Xie, R.L. Frostc,
A new approach to prepare ZVI and its application in removal
of Cr(VI) from aqueous solution, Chem. Eng. J., 244 (2014)
264–272.
- R. Fu, X. Zhang, Z. Xu, X. Guo, D. Bi, W. Zhang, Fast and highly
efficient removal of chromium (VI) using humus-supported
nanoscale zero-valent iron: Influencing factors, kinetics and
mechanism, Sep. Purif. Technol., 174 (2017) 362–371.
- L. Xu, J. Wang, Magnetic nanoscaled Fe3O4/CeO2 composite as
an efficient Fenton-like heterogeneous catalyst for degradation
of 4-chlorophenol, Environ. Sci. Technol., 46 (2017) 10145–10153.
- N. Sleiman, V. Deluchat, M. Wazne, M. Mallet, A. Courtin-Nomade, V. Kazpard, M. Baudu, A. Courtin-Nomade, V. Kazpard,
Phosphate removal from aqueous solution using ZVI/sand
bed reactor: behavior and mechanism, Water Res., 99 (2016)
56–65.
- Z. Fang, X. Qiu, R. Huang, X. Qiu, M. Li, Removal of chromium
in electroplating wastewater by nanoscale zero-valent metal
with synergistic effect of reduction and immobilization,
Desalination, 280 (2011) 224–231.
- K. Nagata, R. Nishiwak, Y. Nakamura, T. Maruyama, Kinetic
mechanisms of the formations of MgCr2O4 and FeCr2O4 spinels
from their metal oxides, Solid State Ion., 49 (1991) 161–166.