References

  1. O. Rosskopfová, M. Galamboš, J. Ometáková, M. Čaplovičová, P. Rajec, Study of sorption processes of copper on synthetic hydroxyapatite, J. Radioanal. Nucl. Chem., 293 (2012) 641–647.
  2. R. Foroutan, R. Mohammadi, S. Farjadfard, H. Esmaeili, M. Saberi, S. Sahebi, S. Dobaradaran, B. Ramavandi, Characteristics and performance of Cd, Ni, and Pb bio-adsorption using Callinectes sapidus biomass: real wastewater treatment, Environ. Sci. Pollut. Res., 26 (2019) 6336–6347.
  3. K. Page, M.J. Harbottle, P.J. Cleall, T.R. Hutchings, Heavy metal leaching and environmental risk from the use of compost-like output as an energy crop growth substrate, Sci. Total Environ., 487 (2014) 260–271.
  4. C.Y. Chang, H.Y. Yu, J.J. Chen, F.B. Li, H.H. Zhang, C.P. Liu, Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China, Environ. Monit. Assess., 186 (2014) 1547–1560.
  5. M.A.H. Bhuiyan, M.A. Islam, S.B. Dampare, L. Parvez, S. Suzuki, Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh, J. Hazard. Mater., 179 (2010) 1065–1077.
  6. F.-M. Pellera, A. Giannis, D. Kalderis, K. Anastasiadou, R. Stegmann, J.-Y. Wang, E. Gidarakos, Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products, J. Environ. Manage., 96 (2012) 35–42.
  7. S.A. Al-Saydeh, M.H. El-Naas, S.J. Zaidi, Copper removal from industrial wastewater: a comprehensive review, J. Ind. Eng. Chem., 56 (2017) 35–44.
  8. Y.-c. Lin, H.-p. Wang, F. Gohar, M.H. Ullah, X. Zhang, D.-f. Xie, H. Fang, J. Huang, J.-x. Yang, Preparation and copper ions adsorption properties of thiosemicarbazide chitosan from squid pens, Int. J. Biol. Macromol., 95 (2017) 476–483.
  9. A. Pal, J. Jayamani, R. Prasad, An urgent need to reassess the safe levels of copper in the drinking water: lessons from studies on healthy animals harboring no genetic deficits, Neuro Toxicology, 44 (2014) 58–60.
  10. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  11. H. Kokes, M.H. Morcali, E. Acma, Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process, Eng. Sci. Technol., 17 (2014) 39–44.
  12. Y. Wei, Q. Zhang, W.-J. Wang, B.-G. Li, S. Zhu, Improvement on stability of polymeric latexes prepared by emulsion ATRP through copper removal using electrolysis, Polymer, 106 (2016) 261–266.
  13. X. Xie, R. Deng, Y. Pang, Y. Bai, W. Zheng, Y. Zhou, Adsorption of copper(II) by sulfur microparticles, Chem. Eng. J., 314 (2017) 434–442.
  14. V.K. Gupta, P. Singh, N. Rahman, Adsorption behavior of Hg(II), Pb(II), and Cd(II) from aqueous solution on Duolite C-433: a synthetic resin, J. Colloid Interface Sci., 275 (2004) 398–402.
  15. W.-Q. Tang, R.-Y. Zeng, Y.-L. Feng, X.-M. Li, W. Zhen, Removal of Cr(VI) from aqueous solution by nano-carbonate hydroxylapatite of different Ca/P molar ratios, Chem. Eng. J., 223 (2013) 340–346.
  16. H. Demiral, C. Güngör, Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse, J. Cleaner Prod., 124 (2016) 103–113.
  17. X. Zhang, Q. Huang, M. Liu, J. Tian, G. Zeng, Z. Li, K. Wang, Q. Zhang, Q. Wan, F. Deng, Y. Wei, Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal, Appl. Surf. Sci., 343 (2015) 19–27.
  18. R. Bazargan-Lari, H.R. Zafarani, M.E. Bahrololoom, A. Nemati, Removal of Cu(II) ions from aqueous solutions by low-cost natural hydroxyapatite/chitosan composite: equilibrium, kinetic and thermodynamic studies, J. Taiwan Inst. Chem. Eng., 45 (2014) 1642–1648.
  19. N.N. Seda, F. Koenigsmark, T.M. Vadas, Sorption and coprecipitation of copper to ferrihydrite and humic acid organomineral complexes and controls on copper availability, Chemosphere, 147 (2016) 272–278.
  20. D. Kanakaraju, S. Ravichandar, Y.C. Lim, Combined effects of adsorption and photocatalysis by hybrid TiO2/ZnO-calcium alginate beads for the removal of copper, J. Environ. Sci., 55 (2017) 214–223.
  21. A. Szcześ, L. Hołysz, E. Chibowski, Synthesis of hydroxyapatite for biomedical applications, Adv. Colloid Interface Sci., 249 (2017) 321–330.
  22. O. Bareiro, L.A. Santos, Tetraethylorthosilicate (TEOS) applied in the surface modification of hydroxyapatite to develop polydimethylsiloxane/hydroxyapatite composites, Colloids Surf., B, 115 (2014) 400–405.
  23. M.S. Fernando, R.M. de Silva, K.M.N. de Silva, Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions, Appl. Surf. Sci., 351 (2015) 95–103.
  24. C.M. Kanno, R.L. Sanders, S.M. Flynn, G. Lessard, S.C.B. Myneni, Novel apatite-based sorbent for defluoridation: synthesis and sorption characteristics of nano-micro-crystalline hydroxyapatite- coated-limestone, Environ. Sci. Technol., 48 (2014) 5798–5807.
  25. F. Xu, C. Jiang, D. Li, Defluoridation of wastewaters using HAP-coated-limestone, Sep. Sci. Technol., (2018), doi: https:// doi.org/10.1080/01496395.2018.1541470.
  26. M. Kamiya, J. Hatta, E. Shimada, Y. Ikuma, M. Yoshimura, H. Monma, AFM analysis of initial stage of reaction between calcite and phosphate, Mater. Sci. Eng., B, 111 (2004) 226–231.
  27. M.A. Osman, U.W. Suter, Surface treatment of calcite with fatty acids: structure and properties of the organic monolayer, Chem. Mater., 14 (2002) 4408–4415.
  28. K. Shiba, S. Motozuka, T. Yamaguchi, N. Ogawa, Y. Otsuka, K. Ohnuma, T. Kataoka, M. Tagaya, Effect of cationic surfactant micelles on hydroxyapatite nanocrystal formation: an investigation into the inorganic–organic interfacial interactions, Cryst. Growth Des., 16 (2016) 1463–1471.
  29. X.S. Wang, L. Zhu, H.J. Lu, Surface chemical properties and adsorption of Cu(II) on nanoscale magnetite in aqueous solutions, Desalination, 276 (2011) 154–160.
  30. X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, H. Li, Highly efficient removal of heavy metal ions by aminefunctionalized mesoporous Fe3O4 nanoparticles, Chem. Eng. J., 184 (2012) 132–140.
  31. X. Peng, Z. Luan, Z. Di, Z. Zhang, C. Zhu, Carbon nanotubesiron oxides magnetic composites as adsorbent for removal of Pb(II) and Cu(II) from water, Carbon, 43 (2005) 880–883.
  32. Y. Liu, M. Chen, H. Yongmei, Study on the adsorption of Cu(II) by EDTA functionalized Fe3O4 magnetic nano-particles, Chem. Eng. J., 218 (2013) 46–54.
  33. S. Hokkanen, A. Bhatnagar, E. Repo, S. Lou, M. Sillanpää, Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution, Chem. Eng. J., 283 (2016) 445–452.
  34. Y. Zhan, J. Lin, J. Li, Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper(II), Environ. Sci. Pollut. Res. Int., 20 (2013) 2512–2526.
  35. F. Fernane, M.O. Mecherri, P. Sharrock, M. Hadioui, H. Lounici, M. Fedoroff, Sorption of cadmium and copper ions on natural and synthetic hydroxylapatite particles, Mater. Charact., 59 (2008) 554–559.
  36. Y.-J. Wang, J.-H. Chen, Y.-X. Cui, S.-Q. Wang, D.-M. Zhou, Effects of low-molecular-weight organic acids on Cu(II) adsorption onto hydroxyapatite nanoparticles, J. Hazard. Mater., 162 (2009) 1135–1140.
  37. L. Yang, W. Zhong, J. Cui, Z. Wei, W. Wei, Enhanced removal of Cu(II) ions from aqueous solution by poorly crystalline hydroxyapatite nanoparticles, J. Dispersion Sci. Technol., 37 (2016) 956–968.
  38. A. Fihri, C. Len, R.S. Varma, A. Solhy, Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis, Coord. Chem. Rev., 347 (2017) 48–76.
  39. G.M. Rajiv, G.N. Kousalya, S. Meenakshi, Removal of copper(II) using chitin/chitosan nano-hydroxyapatite composite, Int. J. Biol. Macromol., 48 (2011) 119–124.
  40. B. Al-Rashdi, C. Tizaoui, N. Hilal, Copper removal from aqueous solutions using nano-scale diboron trioxide/titanium dioxide (B2O3/TiO2) adsorbent, Chem. Eng. J., 183 (2012) 294–302.
  41. Y.-H. Chen, F.-A. Li, Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts, J. Colloid Interface Sci., 347 (2010) 277–281.
  42. M.M. Rao, D.K. Ramana, K. Seshaiah, M.C. Wang, S.W.C. Chien, Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls, J. Hazard. Mater., 166 (2009) 1006–1013.
  43. C.-H. Wu, Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes, J. Colloid Interface Sci., 311 (2007) 338–346.
  44. P. Sricharoen, N. Limchoowong, Y. Areerob, P. Nuengmatcha, S. Techawongstien, S. Chanthai, Fe3O4/hydroxyapatite/graphene quantum dots as a novel nano-sorbent for preconcentration of copper residue in Thai food ingredients: optimization of ultrasound-assisted magnetic solid phase extraction, Ultrason. Sonochem., 37 (2017) 83–93.
  45. A.L. da Silva Lage Moreira, A. de Souza Pereira, M.G. Speziali, K.M. Novack, L.V. Alves Gurgel, L.F. Gil, Bifunctionalized chitosan: a versatile adsorbent for removal of Cu(II) and Cr(VI) from aqueous solution, Carbohydr. Polym., 201 (2018) 218–227.
  46. J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, D. Zhu, Aminofunctionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal, J. Colloid Interface Sci., 349 (2010) 293–299.
  47. H. Faghihian, Z. Adibmehr, Comparative performance of novel magnetic ion-imprinted adsorbents employed for Cd2+, Cu2+ and Ni2+ removal from aqueous solutions, Environ. Sci. Pollut. Res., 25 (2018) 15068–15079.