References
- P. Kjellin, K. Holmberg, M. Nydén, A new method for the
study of calcium carbonate growth on steel surfaces, Colloids
Surf., A, 194 (2001) 49–55.
- L.D. Tijing, H.Y. Kim, D.H. Lee, C.S. Kim, Y.I. Cho, Physical
water treatment using RF electric fields for the mitigation
of CaCO3 fouling in cooling water, Int. J. Heat Mass Transf.,
53 (2010) 1426–1437.
- C. Gabrielli, G. Maurin, H. Francy-Chausson, P. Thery, T.T.M.
Tran, M. Tlili, Electrochemical water softening: principle and
application, Desalination, 201 (2006) 150–163.
- G.F. Huff, Aquifer composition and the tendency toward
scale-deposit
formation during reverse osmosis desalination:
examples from saline ground water in New Mexico, USA,
Desalination, 190 (2006) 235–242.
- N. Cifuentes-Araya, C. Astudillo-Castro, L. Bazinet, Mechanisms
of mineral membrane fouling growth modulated by
pulsed modes of current during electrodialysis: evidences of
water splitting implications in the appearance of the amorphous
phases of magnesium hydroxide and calcium carbonate,
J. Colloid Interface Sci., 426 (2014) 221–234.
- I.B.S. Sayadi, P. Sistat, M.M. Tlili, Assess of physical antiscaletreatments
on conventional electrodialysis pilot unit during
brackish water desalination, Chem. Eng. Process. Process Intensif.,
88 (2015) 47–57.
- H.J. Meyer, The influence of impurities on the growth rate of
calcite, J. Cryst. Growth, 66 (1984) 639–646.
- N. Wada, K. Yamashita, T. Umegajki, Effects of divalent cations
upon nucleation, growth and transformation of calcium carbonate
polymorphs under conditions of double diffusion, J. Cryst.
Growth, 148 (1995) 297–304.
- A. Gutjahr, H. Dabringhaus, R. Lacmann, Studies of the growth
and dissolution kinetics of the CaCO3 polymorphs calcite and
aragonite, II. The influence of divalent cation additives on the
growth and dissolution rates, J. Cryst. Growth, 158 (1996) 310–315.
- A.S. Manzola, M. Ben Amor, Étude des équilibres des phases
du carbonate de calcium: influence des compagnons de
cristallisation, J. Phys. IV France, 11 (2001) 175–182.
- T. Chen, A. Neville, M. Yuan, Assessing the effect of Mg2+ on
CaCO3 scale formation-bulk precipitation and surface deposition,
J. Cryst. Growth, 275 (2005) 1341–1347.
- Y. Ben Amor, L. Bousselmi, B. Tribollet, E. Triki, Study of the
effect of magnesium concentration on the deposit of allotropic
forms of calcium carbonate and related carbon steel interface
behavior, Electrochim. Acta, 55 (2010) 4820–4826.
- M.M. Tlili, M. Ben Amor, C. Gabrielli, S. Joiret, G. Maurin,
P. Rousseau, Study of electrochemical deposition of CaCO3
by in situ Raman spectroscopy. II. Influence of the solution
composition, J. Electrochem. Soc., 150 7 (2003) C485-C493.
- Y. Ben Amor, L. Bousselmi, E. Sutter, J.P. Labbé, E. Triki,
C. Fiaud, Apport de la microbalance à quartz dans l’étude
de l’influence des ions sulfate, chlorure et magnésium sur la
cinétique d’entartrage, Mater. Technol., 92 (2004) 53–61.
- Y. Ben Amor, L. Bousselmi, M.C. Bernard, B. Tribollet, Nucleationgrowth
process of calcium carbonate electrodeposition in
artificial water-Influence of the sulfate ions, J. Cryst. Growth,
320 (2011) 69–71.
- Q. Wang, H. Al Saiari, F. Al Dawood, M. Al Dossary, CaCO3
scale prevention by additives in the presence of heavy metal
ions, Int. J. Corros. Scale Inhib., 5 (2016) 12–30.
- K. Zeppenfeld, Inhibition of CaCO3 scaling by zinc (II) and copper
(II): a comparative review, Physikalische und Energetische
Wasserbehandlungsverfahren für Wärmeübertrager und Rohrleitungen
in der gewerblichen und industriellen Anwendung,
Edition: 2. Ed., Chapter: 1 Grundlegende Untersuchungen zur
Wirksamkeit, PP Publico Publications Essen, Germany, D. Ende,
Ed., 2016, pp. 4–20.
- K. Zeppenfeld, Der Einfluss von Kupfer (II) und Zink (II) auf die
Bildung technischer Carbonatinkrustationen (“Kesselstein”),
Chem. Ing. Technol., 83 (2010) 673–679.
- J. MacAdam, S.A. Parsons, The Effect of Metal Ions on Calcium
Carbonate Precipitation and Scale Formation. Sustainability
in Energy and Buildings, Springer, Berlin Heidelberg, 2009,
pp. 137–146.
- D. Lisitsin, Q. Yang, D. Hasson, R. Semiat, Inhibition of CaCO3
scaling on RO membranes by trace amounts of zinc ions.
Desalination, 183 (2005) 289–300.
- D. Liu, F. Hui, J. Ledion, F. Li, Effectiveness of copper and zinc
ions in preventing scaling of drinking water. Environ. Technol.,
32 (2011) 609–616.
- K. Zeppenfeld, Prevention of CaCO3 scale formation by trace
amounts of copper (II) in comparison to zinc (II), Desalination,
252 (2010) 60–65.
- B. Pernot, H. Euvrard, F. Remy, P. Simon, Influence of Zn(II) on
the crystallization of calcium carbonate application to scaling
mechanism, J. Wat. SRT-Aqua, 48 (1999) 16–23.
- H.S. Ras, S. Ghizellaoui, Influence of copper and zinc on the
power furring of encrusting water, Energy Procedia, 18 (2012)
1511–1522.
- C. GabrieIIi, M. Keddam, A. KhaliI, G. Maurin, H. Perrot,
R. Rosset, M. Zidoune, Quartz crystal microbalance investigation
of electrochemical calcium carbonate scaling, J. Electrochem.
Soc., 145 (1998) 2386–2395.
- Y. Chao, O. Horner, F. Hui, J. Lédion, H. Perrot, Direct detection
of calcium carbonate scaling via a pre-calcified sensitive area of
a quartz crystal microbalance, Desalination, 352 (2014) 103–108.
- S. Ghizellaoui, M. Euvrard, J. Ledion, A. Chibani, Inhibition of
scaling in the presence of copper and zinc by various chemical
processes. Desalination, 206 (2007) 185–197.
- D. Peronno, H. Cheap-Charpentier, O. Horner, H. Perrot, Study
of the inhibition effect of two polymers on calcium carbonate
formation by fast controlled precipitation method and quartz
crystal microbalance, J. Water Process Eng., 7 (2015) 11–20.
- S. Ghizellaoui, J. Lédion, S. Ghizellaoui, A. Chibani, Etude de
l’inhibition du pouvoir entartrant des eaux du Hamma par
précipitation contrôlée rapide et par un essai d’entartrage
accéléré, Desalination, 166 (2004) 315–327.
- R. Hamdi, M.M. Tlili, Conductometric study of calcium carbonate
pre-nucleation stage: underlining the role of CaCO3° ion
pairs, Cryst. Res. Technol., 51 (2016) 99–109.
- C.G. Kontoyannis, N.V. Vagenas, Calcium carbonate phase
analysis using XRD and FT-Raman spectroscopy, Analyst,
125 (2000) 251–255.
- G. Gauthier, Y. Chao, O. Horner, O. Alos-Ramos, F. Hui,
J. Lédion, H. Perrot, Application of the fast controlled
precipitation method to assess the scale-forming ability of raw
river waters, Desalination, 299 (2012) 89–95.
- L. Wen-Jun, F. Hui, J. Lédion, W. Xing-Wu, The influence
of metal ion on the scaling in the mineral water tests, Ionics,
14 (2008) 449–454.
- P.P. Coetzee, M. Yacoby, S. Howell, S. Mubenga, Scale reduction
and scale modification effects induced by Zn and other metal
species in physical water treatment, Water SA, 24 (1998)
378–4738.
- S. Benslimane, H. Perrot, R. Bennezar, K. Bouhidel, Thermodynamic
study of Zn2+ inhibition properties and mechanism on
calcium carbonate precipitation by chemical and electrochemical
methods, Desalination, 398 (2016) 114–120.
- J. MacAdam, S. Parsons, Calcium carbonate scale formation and
control, Rev. Environ. Sci. Biotechnol., 3 (2004) 153–169.
- M. Belattar, A Hadfi, S. Ben-Aazza, N. Hafid, A. Driouiche,
Study of thermodynamic predictions of scaling of sanitary
waters in the tourist area of Agadir, J. Mater. Environ. Sci.,
9 (2018) 1582–1587.
- K.I. Parsiegla, J.L. Katz, Calcite growth inhibition by copper (II):
II. Effect of solution composition, J. Cryst. Growth, 213 (2000)
368–380.
- C. Gabrielli, G. Maurin, G. Poindessous, R. Rosset, Nucleation
and growth of calcium carbonate by an electrochemical scaling
process, J. Cryst. Growth, 200 (1999) 236–250.
- H. Elfil, H. Roques, Role of quartz microbalance in the study of
calcium carbonate germination, Entropie, 231 (2001) 29–40.
- H. Elfil, R. Nawel, A. Gadri, J.C. Bollinger, Suivi par microbalance
à quartz de l’inhibition chimique de la précipitation de gypse,
J. Eur. Hydrol., 35 (2004) 161–176.
- H. Hui, J. Lédion, Evaluation gravimétrique des vitesses
d’entartrage sur tubes témoins, J. Eur. Hydrol., 34 (2003)
221–234.
- H. Cheap-Charpentier, O. Horner, J. Lédion, H. Perrot, Study of
the influence of the supersaturation coefficient on scaling rate
using the pre-calcified surface of a quartz crystal microbalance,
Water Res., 142 (2018) 347–353.