References

  1. S. Wadley, C. Brouckaert, L. Baddock, C. Buckley, Modelling of nanofiltration applied to the recovery of salt from waste brine at a sugar decolourisation plant, J. Membr. Sci., 102 (1995) 163–175.
  2. M. Rachakornkij, S. Ruangchuay, S. Teachakulwiroj, Removal of reactive dyes from aqueous solution using bagasse fly ash, SJST, 26 (2004) 13–24.
  3. G. da Cunha Gonçalves, N.C. Pereira, M.T. Veit, Production of bio-oil and activated carbon from sugarcane bagasse and molasses, Biomass Bioenergy, 85 (2016) 178–186.
  4. V.K. Gupta, I. Ali, Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste, J. Colloid Interface Sci., 271 (2004) 321–328.
  5. V.C. Srivastava, M.M. Swamy, I.D. Mall, B. Prasad, I.M. Mishra, Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics, Colloids Surf., A, 272 (2006) 89–104.
  6. J.M. Rodríguez-Díaz, J.O.P. García, L.R.B. Sánchez, M.G.C. da Silva, V.L. da Silva, L.E. Arteaga-Pérez, Comprehensive characterization of sugarcane bagasse ash for its use as an adsorbent, Bioenergy Res., 8 (2015) 1885–1895.
  7. S. Thongpradistha, Decolorization of Sugar Syrup by Using Bagasse Fly Ash, Biotechnology, School of Bioresources and Technology, Bangkok, King Mongkut’s University of Technology Thonburi, M.S. Thesis, 2007, p. 111.
  8. V.K. Gupta, C. Jain, I. Ali, M. Sharma, V. Saini, Removal of cadmium and nickel from wastewater using bagasse fly ash — a sugar industry waste, Water Res., 37 (2003) 4038–4044.
  9. I.D. Mall, V.C. Srivastava, N.K. Agarwal, Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash— kinetic study and equilibrium isotherm analyses, Dyes Pigm., 69 (2006) 210–223.
  10. I.D. Mall, V.C. Srivastava, N.K. Agarwal, I.M. Mishra, Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses, Chemosphere, 61 (2005) 492–501.
  11. Q. Lu, G.A. Sorial, The effect of functional groups on oligomerization of phenolics on activated carbon, J. Hazard. Mater., 148 (2007) 436–445.
  12. S. Subramanian, G. Pande, G. De Weireld, J.-M. Giraudon, J.-F. Lamonier, V.S. Batra, Sugarcane bagasse fly ash as an attractive agro-industry source for VOC removal on porous carbon, Ind. Crops Prod., 49 (2013) 108–116.
  13. J. Fito, N. Tefera, S.W. Van Hulle, Adsorption of distillery spent wash on activated bagasse fly ash: kinetics and thermodynamics, J. Environ. Chem. Eng., 5 (2017) 5381–5388.
  14. S. Wong, N. Ngadi, I.M. Inuwa, O. Hassan, Recent advances in applications of activated carbon from biowaste for wastewater treatment: a short review, J. Cleaner Prod., 175 (2018) 361–375.
  15. P. Gu, S. Zhang, X. Li, X. Wang, T. Wen, R. Jehan, A. Alsaedi, T. Hayat, X. Wang, Recent advances in layered double hydroxidebased nanomaterials for the removal of radionuclides from aqueous solution, Environ. Pollut., 240 (2018) 493–505.
  16. J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, T. Hayat, X. Wang, Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions, Chem. Soc. Rev., 47 (2018) 2322–2356.
  17. G. Zhao, X. Huang, Z. Tang, Q. Huang, F. Niu, X. Wang, Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review, Polym. Chem., 9 (2018) 3562–3582.
  18. Z. Gholami, B. Ghorbani, A. Hooshmand, E. Moghbeli, Evaluation of modified bagasse fly ash nanoparticles on cadmium (II) removal from contaminated waters, Int. J. Agric. Res. Innov. Technol., 3 (2014) 379–384.
  19. Y. Ngernyen, A. Laungphairojana, T. Nikronsangkhaphinit, S. Kaewketkam, The utilization of boiler fly ash for treatment of wastewater color by adsorption process: case study for pulp and paper industry, Key Eng. Mater., 718 (2017) 87–94.
  20. ASTM D 2974-8, Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils, ASTM International, West Conshohocken, PA, 1993, 31–33.
  21. M. Mohebbi, F. Rajabipour, B.E. Scheetz, Reliability of Loss on Ignition (LOI) Test for Determining the Unburned Carbon Content in Fly Ash, in World of Coal Ash Conference (WOCA), Nashville, TN, May 2015.
  22. ASTM D7348-08, Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues, Annual Book of ASTM Standards, West Conshohocken, PA, 2008, pp. 1–7.
  23. ASTM D3838-80, Standard Test for pH of Activated Carbon, ASTM International, West Conshohocken, PA, 1999, pp. 1–2.
  24. S. Joshi, B.P. Pokharel, Preparation and characterization of activated carbon from lapsi (Choerospondias axillaris) seed stone by chemical activation with potassium hydroxide, J. Inst. Eng., 9 (2014) 79–88.
  25. ASTM D4607-86, Standard Test Method for Determination of Iodine Number of Activated Carbon, ASTM International, West Conshohocken, PA, 1999, pp. 1–5.
  26. P. Devnarain, D. Arnold, S. Davis, Production of Activated Carbon from South African Sugarcane Bagasse, in Proc. S. Afr. Sug. Technol. Ass., 2002.
  27. H. Karunarathne, B. Amarasinghe, Fixed bed adsorption column studies for the removal of aqueous phenol from activated carbon prepared from sugarcane bagasse, Energy Procedia, 34 (2013) 83–90.
  28. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  29. A. Aworn, P. Thiravetyan, W. Nakbanpote, Preparation and characteristics of agricultural waste activated carbon by physical activation having micro-and mesopores, J. Anal. Appl. Pyrolysis, 82 (2008) 279–285.
  30. R.R. Bansode, Treatment of Organic and Inorganic Pollutants in Municipal Wastewater by Agricultural By-product Based Granular Activated Carbons (GAC), in Food Science Agricultural and Mechanical College. 2002, Osmania University, p. 88.
  31. B. Pendyal, M. Johns, W. Marshall, M. Ahmedna, R. Rao, Removal of sugar colorants by granular activated carbons made from binders and agricultural by-products, Bioresour. Technol., 69 (1999) 45–51.
  32. K. Montakarntiwong, N. Chusilp, W. Tangchirapat, C. Jaturapitakkul, Strength and heat evolution of concretes containing bagasse ash from thermal power plants in sugar industry, Mater. Des., 49 (2013) 414–420.
  33. V.C. Srivastava, I.D. Mall, I.M. Mishra, Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA), Chem. Eng. J., 132 (2007) 267–278.
  34. N. Taha, S. Abdelhafez, A. El-Maghraby, Chemical and physical preparation of activated carbon using raw bagasse pith for cationic dye adsorption, Global Nest J., 18 (2016) 402–415.
  35. P. Udhayakala, A. Jayanthi, T. Rajendiran, S. Gunasekaran, Molecular structure, FT-IR and FT-Raman spectra and HOMOLUMO analysis of 2-methoxy-4-nitroaniline using abinitio HF and DFT (B3LYP/B3PW91) calculations, Arch. Appl. Sci. Res., 3 (2011) 424–439.
  36. D. Govindarajan, G. Jayalakshmi, XRD, FTIR and microstructure studies of calcined sugarcane bagasse ash, Adv. App. S. Res., 2 (2011) 544–549.
  37. M.P. Moisés, C.T.P. da Silva, J.G. Meneguin, E.M. Girotto, E. Radovanovic, Synthesis of zeolite NaA from sugarcane bagasse ash, Mater. Lett., 108 (2013) 243–246.