References

  1. B. Shen, X. Wen, G.V. Korshin, Electrochemical oxidation of ciprofloxacin in two different processes: the electron transfer process on the anode surface and the indirect oxidation process in bulk solutions, Environ. Sci. Process. Impact., 20 (2018) 943–955.
  2. A. Gupta, A. Garg, Degradation of ciprofloxacin using Fenton’s oxidation: effect of operating parameters, identification of oxidized by-products and toxicity assessment, Chemosphere, 193 (2018) 1181–1188.
  3. M.S. Yahya, N. Oturan, K. El Kacemi, M. El Karbane, C. Aravindakumar, M.A. Oturan, Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: kinetics and oxidation products, Chemosphere, 117 (2014) 447–454.
  4. J. Deng, Y. Ge, C. Tan, H. Wang, Q. Li, S. Zhou, K. Zhang, Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: effect of water constituents, degradation intermediates and toxicity evaluation, Chem. Eng. J., 330 (2017) 1390–1400.
  5. A. Wang, Y. Zhang, H. Zhong, Y. Chen, X. Tian, D. Li, J. Li, Efficient mineralization of antibiotic ciprofloxacin in acid aqueous medium by a novel photoelectro-Fenton process using a microwave discharge electrodeless lamp irradiation, J. Hazard. Mater., 342 (2018) 364–374.
  6. Y. Chen, A. Wang, Y. Zhang, R. Bao, X. Tian, J. Li, Electro-Fenton degradation of antibiotic ciprofloxacin (CIP): formation of Fe3+-CIP chelate and its effect on catalytic behavior of Fe2+/Fe3+ and CIP mineralization, Electrochim. Acta., 256 (2017) 185–195.
  7. H. Pourzamani, N. Mengelizadeh, H. Mohammadi, N. Niknam, B. Neamati, R. Rahimi, Comparison of electrochemical advanced oxidation processes for removal of ciprofloxacin from aqueous solutions, Desal. Wat. Treat., 113 (2018) 307–318.
  8. X. Zhang, R. Li, M. Jia, S. Wang, Y. Huang, C. Chen, Degradation of ciprofloxacin in aqueous bismuth oxybromide (BiOBr) suspensions under visible light irradiation: a direct hole oxidation pathway, Chem. Eng. J., 274 (2015) 290–297.
  9. M. Wang, G. Li, L. Huang, J. Xue, Q. Liu, N. Bao, J. Huang, Study of ciprofloxacin adsorption and regeneration of activated carbon prepared from Enteromorpha prolifera impregnated with H3PO4 and sodium benzenesulfonate, Ecotoxicol. Environ. Saf., 139 (2017) 36–42.
  10. J.J.S. Alonso, N. El Kori, N. Melián-Martel, B. Del Río-Gamero, Removal of ciprofloxacin from seawater by reverse osmosis, J. Environ. Manage., 217 (2018) 337–345.
  11. A.R. Rahmani, H. Rezaei-Vahidian, H. Almasi, F. Donyagard, Modeling and optimization of ciprofloxacin degradation by hybridized potassium persulfate/zero valent-zinc/ultrasonic process, Environ. Process., 4 (2017) 563–572.
  12. A. Khan, Z. Liao, Y. Liu, A. Jawad, J. Ifthikar, Z. Chen, Synergistic degradation of phenols using peroxymonosulfate activated by CuO-Co3O4@MnO2 nanocatalyst, J. Hazard. Mater., 329 (2017) 262–271.
  13. F. Gong, L. Wang, D. Li, F. Zhou, Y. Yao, W. Lu, S. Huang, W. Chen, An effective heterogeneous iron-based catalyst to activate peroxymonosulfate for organic contaminants removal, Chem. Eng. J., 267 (2015) 102–110.
  14. F. Ghanbari, N. Jaafarzadeh, Graphite-supported CuO catalyst for heterogeneous peroxymonosulfate activation to oxidize Direct Orange 26: the effect of influential parameters, Res. Chem. Intermed., 43 (2017) 4623–4637.
  15. Q. Yang, H. Choi, D.D. Dionysiou, Nanocrystalline cobalt oxide immobilized on titanium dioxide nanoparticles for the heterogeneous activation of peroxymonosulfate, Appl. Catal. B. Environ., 74 (2007) 170–178.
  16. P. Shi, R. Su, S. Zhu, M. Zhu, D. Li, S. Xu, Supported cobalt oxide on graphene oxide: highly efficient catalysts for the removal of Orange II from water, J. Hazard. Mater., 229 (2012) 331–339.
  17. Y. Yao, Z. Yang, H. Sun, S. Wang, Hydrothermal synthesis of Co3O4–graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol, Ind. Eng. Chem. Res., 51 (2012) 14958–14965.
  18. Y. Wang, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, Magnetic Fe3O4/carbon sphere/cobalt composites for catalytic oxidation of phenol solutions with sulfate radicals, Chem. Eng. J., 245 (2014) 1–9.
  19. J. Liu, Z. Zhao, P. Shao, F. Cui, Activation of peroxymonosulfate with magnetic Fe3O4–MnO2 core–shell nanocomposites for 4-chlorophenol degradation, Chem. Eng. J., 262 (2015) 854–861.
  20. L. Xu, W. Chu, L. Gan, Environmental application of graphenebased CoFe2O4 as an activator of peroxymonosulfate for the degradation of a plasticizer, Chem. Eng. J., 263 (2015) 435–443.
  21. Y. Li, X. Wu, Z. Li, S. Zhong, W. Wang, A. Wang, J. Chen, Fabrication of CoFe2O4–graphene nanocomposite and its application in the magnetic solid phase extraction of sulfonamides from milk samples, Talanta, 144 (2015) 1279–1286.
  22. J. Deng, Y. Shao, N. Gao, C. Tan, S. Zhou, X. Hu, CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water, J. Hazard. Mater., 262 (2013) 836–844.
  23. C. Tan, N. Gao, D. Fu, J. Deng, L. Deng, Efficient degradation of paracetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as a heterogeneous catalyst of peroxymonosulfate, Sep. Purif. Technol., 175 (2017) 47–57.
  24. Y. Xu, J. Ai, H. Zhang, The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process, J. Hazard. Mater., 309 (2016) 87–96.
  25. Y. Wang, Y. Xie, C. Chen, X. Duan, H. Sun, S. Wang, Synthesis of magnetic carbon supported manganese catalysts for phenol oxidation by activation of peroxymonosulfate, Catalysts, 7 (2016) 3.
  26. Y. Du, W. Ma, P. Liu, B. Zou, J. Ma, Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants, J. Hazard. Mater., 308 (2016) 58–66.
  27. R. Tabit, O. Amadine, Y. Essamlali, K. Dânoun, A. Rhihil, M. Zahouily, Magnetic CoFe2O4 nanoparticles supported on graphene oxide (CoFe2O4/GO) with high catalytic activity for peroxymonosulfate activation and degradation of rhodamine B, RSC Adv., 8 (2018) 1351–1360.
  28. J. Deng, Y.-J. Chen, Y.-A. Lu, X.-Y. Ma, S.-F. Feng, N. Gao, J. Li, Synthesis of magnetic CoFe2O4/ordered mesoporous carbon nanocomposites and application in Fenton-like oxidation of rhodamine B, Environ. Sci. Pollut. Res., 24 (2017) 14396–14408.
  29. Y. Huang, W. Wang, Q. Feng, F. Dong, Preparation of magnetic clinoptilolite/CoFe2O4 composites for removal of Sr2+ from aqueous solutions: kinetic, equilibrium, and thermodynamic studies, J. Saudi. Chem. Soc., 21 (2017) 58–66.
  30. F. Zhao, Y. Zou, X. Lv, H. Liang, Q. Jia, W. Ning, Synthesis of CoFe2O4–zeolite materials and application to the adsorption of gallium and indium, J. Chem. Eng. Data., 60 (2015) 1338–1344.
  31. J. Yan, W. Gao, M. Dong, L. Han, L. Qian, C.P. Nathanail, M. Chen, Degradation of trichloroethylene by activated persulfate using a reduced graphene oxide supported magnetite nanoparticle, Chem. Eng. J., 295 (2016) 309–316.
  32. G. Rakhshandehroo, M. Salari, M. Nikoo, Optimization of degradation of ciprofloxacin antibiotic and assessment of degradation products using full factorial experimental design by Fenton homogenous process, Global NEST J., 20 (2018) 324–332.
  33. L. Gan, A. Geng, L. Xu, M. Chen, L. Wang, J. Liu, S. Han, C. Mei, Q. Zhong, The fabrication of bio-renewable and recyclable cellulose based carbon microspheres incorporated by CoFe2O4 and the photocatalytic properties, J. Cleaner Prod., 196 (2018) 594–603.
  34. J. Deng, Y.-q. Cheng, Y.-a. Lu, J.C. Crittenden, S.-q. Zhou, N.-y. Gao, J. Li, Mesoporous manganese Cobaltite nanocages as effective and reusable heterogeneous peroxymonosulfate activators for Carbamazepine degradation, Chem. Eng. J., 330 (2017) 505–517.
  35. G.-X. Huang, C.-Y. Wang, C.-W. Yang, P.-C. Guo, H.-Q. Yu, Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: synergism between Mn and Fe, Environ. Sci. Technol., 51 (2017) 12611–12618.
  36. L. Lai, H. Zhou, B. Lai, Heterogeneous degradation of bisphenol A by peroxymonosulfate activated with vanadiumtitanium magnetite: performance, transformation pathways and mechanism, Chem. Eng. J., 349 (2018) 633–645.
  37. J. Li, M. Xu, G. Yao, B. Lai, Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: kinetic, degradation intermediates, and toxicity evaluation, Chem. Eng. J., 348 (2018) 1012–1024.
  38. L. Yang, X. Qin, X. Jiang, M. Gong, D. Yin, Y. Zhang, B. Zhao, SERS investigation of ciprofloxacin drug molecules on TiO2 nanoparticles, Phys. Chem. Chem. Phys., 17 (2015) 17809–17815.
  39. G.P. Anipsitakis, D.D. Dionysiou, Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt, Environ. Sci. Technol., 37 (2003) 4790–4797.
  40. C. Liu, Y. Wang, Y. Zhang, R. Li, W. Meng, Z. Song, F. Qi, B. Xu, W. Chu, D. Yuan, Enhancement of Fe@porous carbon to be an efficient mediator for peroxymonosulfate activation for oxidation of organic contaminants: incorporation NH2-group into structure of its MOF precursor, Chem. Eng. J., 354 (2018) 835–848.
  41. S.-H. Do, J.-H. Jo, Y.-H. Jo, H.-K. Lee, S.-H. Kong, Application of a peroxymonosulfate/cobalt (PMS/Co (II)) system to treat diesel-contaminated soil, Chemosphere, 77 (2009) 1127–1131.
  42. Z. Zhao, J. Zhao, C. Yang, Efficient removal of ciprofloxacin by peroxymonosulfate/Mn3O4-MnO2 catalytic oxidation system, Chem. Eng. J., 327 (2017) 481–489.
  43. Y.-H. Huang, Y.-F. Huang, C.-i. Huang, C.-Y. Chen, Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+ catalyst, J. Hazard. Mater., 170 (2009) 1110–1118.
  44. S. Su, W. Guo, Y. Leng, C. Yi, Z. Ma, Heterogeneous activation of oxone by CoxFe3−xO4 nanocatalysts for degradation of rhodamine B, J. Hazard. Mater., 244 (2013) 736–742.
  45. J. Li, Y. Ren, F. Ji, B. Lai, Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles, Chem. Eng. J., 324 (2017) 63–73.
  46. Y. Yao, Z. Yang, D. Zhang, W. Peng, H. Sun, S. Wang, Magnetic CoFe2O4–graphene hybrids: facile synthesis, characterization, and catalytic properties, Ind. Eng. Chem. Res., 51 (2012) 6044–6051.
  47. X. Zhou, P. Shi, Y. Qin, J. Fan, Y. Min, W. Yao, Synthesis of Co3O4/graphene composite catalysts through CTAB-assisted method for Orange II degradation by activation of peroxymonosulfate, J. Mater. Sci. Mater. Electron., 27 (2016) 1020–1030.
  48. L. Lai, J. Yan, J. Li, B. Lai, Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: performance, biotoxicity, degradation pathways and mechanism, Chem. Eng. J., 343 (2018) 676–688.
  49. C. Tan, N. Gao, Y. Deng, J. Deng, S. Zhou, J. Li, X. Xin, Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate, J. Hazard. Mater., 276 (2014) 452–460.
  50. N.M. Julkapli, S. Bagheri, Graphene supported heterogeneous catalysts: an overview, Int. J. Hydrog. Energy., 40 (2015) 948–979.
  51. P. Shi, R. Su, F. Wan, M. Zhu, D. Li, S. Xu, Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange II in water by advanced oxidation technology based on sulfate radicals, Appl. Catal. B. Environ., 123 (2012) 265–272.
  52. J. Zhang, M. Chen, L. Zhu, Activation of peroxymonosulfate by iron-based catalysts for orange G degradation: role of hydroxylamine, RSC Adv., 6 (2016) 47562–47569.
  53. M. Chen, J. Yao, Y. Huang, H. Gong, W. Chu, Enhanced photocatalytic degradation of ciprofloxacin over Bi2O3/(BiO)2 CO3 heterojunctions: efficiency, kinetics, pathways, mechanisms and toxicity evaluation, Chem. Eng. J., 334 (2018) 453–461.
  54. J. Deng, M. Xu, S. Feng, C. Qiu, X. Li, J. Li, Iron-doped ordered mesoporous Co3O4 activation of peroxymonosulfate for ciprofloxacin degradation: performance, mechanism and degradation pathway, Sci. Total Environ., 658 (2019) 343–356.