References

  1. F. Bhunia, N. C. Saha, A. Kaviraj, Toxicity of thiocyanate to fish, plankton, worm, and aquatic ecosystem, Bull. Environ. Contam. Toxicol., 64 (2000) 197–204.
  2. M. Valdés, M. Díaz-García, Determination of thiocyanate within physiological fluids and environmental samples: current practice and future trends, Crit. Rev. Anal. Chem., 34 (2004) 9–23.
  3. M.F. Erdogan, Thiocyanate overload and thyroid disease, Biofactors, 19 (2003) 107–11.
  4. H. Abdolmohammad-Zadeh, H. Vasli, Monitoring of thiocyanate as a biomarker in saliva and serum samples by a combination of solid-phase extraction based on a layered double hydroxide nano-sorbent and gas chromatography, Anal. Methods, 6 (2014) 3661–3667.
  5. T.G. Burke, A.H. Mutnick, Treatment of cyanide and thiocyanate toxicity secondary to sodium nitroprusside, J. Pharm. Technol., 10 (1994) 207–209.
  6. V.K. Sharma, C.R. Burnett, D.B. O’Connor, D. Cabelli, Iron(VI) and iron(V) oxidation of thiocyanate, Environ. Sci. Technol., 36 (2002) 4182–4186.
  7. S.L. Budaev, A.A. Batoeva, B.A. Tsybikova, Degradation of thiocyanate in aqueous solution by persulfate activated ferric ion, Miner. Eng., 81 (2015) 88–95.
  8. Y. Cho, R.W. Cattrall, S.D. Kolev, A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water, J. Hazard. Mater., 341 (2018) 297–303.
  9. T. Wu, D. Sun, Y. Li, H. Zhang, F. Lu, Thiocyanate removal from aqueous solution by a synthetic hydrotalcite sol, J. Colloid Interface Sci., 355 (2011) 198–203.
  10. Y. Li, B. Gao, T. Wu, W. Chen, X. Li, B. Wang, Adsorption kinetics for removal of thiocyanate from aqueous solution by calcined hydrotalcite, Colloids Surf., A, 325 (2008) 38–43.
  11. F. Xie, J. Borowiec, J. Zhang, Synthesis of AgCl nanoparticlesloaded hydrotalcite as highly efficient adsorbent for removal of thiocyanate, Chem. Eng. J., 223 (2013) 584–591.
  12. H. Phuc, V. John, W. Moreau, Thiocyanate adsorption on ferrihydrite and its fate during ferrihydrite transformation to hematite and goethite, Chemosphere, 119 (2015) 987–993.
  13. Y.N. Dhoble, S. Ahmed, Equilibrium, kinetic and thermodynamic studies on the adsorption of thiocyanate by steel slag in an aqueous system, Adv. Environ. Technol., 4 (2017) 193–203.
  14. C. Namasivayam, K. Prathap, Removal of thiocyanate by industrial solid waste Fe(III)/Cr(III) hydroxide: kinetic and equilibrium studies, J. Environ. Eng. Manage., 16 (2006) 267–274.
  15. J. Wang, Y. Han, J. Li, J. Wei, Selective adsorption of thiocyanate anions using straw supported ion imprinted polymer prepared by surface imprinting technique combined with RAFT polymerization, Sep. Purif. Technol., 177 (2017) 62–70.
  16. E.B. Özkütük, E. Özalp, A.A. Özcan, S.E. Diltemiz, Selective separation of thiocyanate ion by ion-imprinted polymer, Hacettepe J. Biol. Chem., 37 (2009) 207–215.
  17. E.B. Özkütük, E. Özalp, A. Ersöz, E. Açıkkalp, R. Say, Thiocyanate separation by imprinted polymeric systems, Microchim. Acta, 169 (2010) 129–135.
  18. R. Ansari, N.K. Fahim, A.F. Dellavar, Removal of thiocyanate ions from aqueous solutions using polypyrrole and polyaniline conducting electroactive polymers, J. Iran. Chem. Res., 2 (2009) 163–171.
  19. N. Dizge, E. Demirbas, M. Kobya, Removal of thiocyanate from aqueous solutions by ion exchange, J. Hazard. Mater., 166 (2009) 1367–1376.
  20. M. Chanda, K.F. O’Driscoll, G.L. Rempel, Removal and recovery of thiocyanate by ligand sorption on polymer-bound ferric ion, React. Polym. Ion Exch. Sorbents, 2 (1984) 175–187.
  21. M. Lahti, J. Vilpo, J. Hovinen, Spectrophotometric determination of thiocyanate in human saliva, J. Chem. Educ., 76 (1999) 1281–1282.
  22. Z. Dong, T. Jiang, B. Xu, Y. Yang, Q. Li, Recovery of gold from pregnant thiosulfate solutions by the resin adsorption technique, Metals, 7 (2017) 1–17.
  23. P. Lundqvist, J. Mårtensson, B. Sörbo, S. Ohman, Adsorption of thiocyanate by anion-exchange resins and its analytical application, Clin. Chem., 29 (1983) 403.
  24. C. Balan, I. Volf, D. Bilba, Chromium (VI) removal from aqueous solutions by Purolite base anion-exchange resins with gel structure, Chem. Ind. Chem. Eng. Q., 19 (2013) 615–628.
  25. S. Edebali, E. Pehlivan, Evaluation of Amberlite IRA96 and Dowex 1x8 ion-exchange resins for the removal of Cr(VI) from aqueous solution, Chem. Eng. J., 161 (2010) 161–166.
  26. P.S. Koujalagi, S.V. Divekar, R.M. Kulkarni, R.K. Nagarale, Kinetics, thermodynamic, and adsorption studies on removal of chromium(VI) using Tulsion A-27(MP) resin, Desal. Wat. Treat., 51 (2013) 3273–3283.
  27. Y.S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 136 (2006) 681–689.
  28. Poonam, S.K. Bharti, N. Kumar, Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent, Appl. Water Sci., 8 (2018) 1–13.
  29. J. Liu, L. Wu, X. Chen, Kinetic model investigation on lead(II) adsorption using silica-based hybrid membranes, Desal. Wat. Treat., 54 (2015) 2307–2313.
  30. S.M. Al-Rashed, A.A. Al-Gaidar, Kinetic and thermodynamic studies on the adsorption behavior of Rhodamine B dye on Duolite C-20 resin, J. Saudi. Chem. Soc., 16 (2012) 209–215.
  31. K. Ganesan, L. Ratke, Facile preparation of monolithic k-carrageenan aerogels, Soft Matter, 10 (2014) 3218–3224.