References
- D. Wang, Y. Sun, Q. Shang, X. Wang, T. Guo, H. Guan, Q. Lu,
Effects of the conjugated structure of Fe–bipyridyl complexes
on photoinduced electron transfer in TiO2 photocatalytic systems,
J. Catal., 356 (2017) 32–42.
- E. Safaralizadeh, S.J. Darzi, A.R. Mahjoub, R. Abazari, Visible
light-induced degradation of phenolic compounds by Sudan
black dye sensitized TiO2 nanoparticles as an advanced
photocatalytic material, Res. Chem. Intermed., 43 (2017)
1197–1209.
- DOE, Environmental Quality (Sewage and Industrial Effluents)
Regulations, Limits of Effluent Standard, Department
of Environment, Ministry of Science, Technology and
Environment, Malaysia, Petaling Jaya, Malaysia, 1974.
- M.R. Gogate, New paradigms and future critical directions in
heterogeneous catalysis and multifunctional reactors, Chem.
Eng. Commun., 204 (2017) 1–27.
- M.A. Nawi, S. Sabar, Sheilatina, Photocatalytic decolourisation
of Reactive Red 4 dye by an immobilised TiO2/chitosan layer by
layer system, J. Colloid Interface Sci., 372 (2012) 80–87.
- S. Murphy, C. Saurel, A. Morrissey, J. Tobin, M. Oelgemöller,
K. Nolan, Photocatalytic activity of a porphyrin/TiO2 composite
in the degradation of pharmaceuticals, Appl. Catal., B, 119–120
(2012) 156–165.
- N.M. Nghia, N. Negishi, N.T. Hue, Enhanced adsorption and
photocatalytic activities of Co-doped TiO2 immobilized on
silica for paraquat, J. Electron. Mater., 47 (2018) 692–700.
- S. Rajoriya, S. Bargole, S. George, V.K. Saharan, P.R. Gogate,
A.B. Pandit, Synthesis and characterization of samarium and
nitrogen doped TiO2 photocatalysts for photo-degradation of
4-acetamidophenol in combination with hydrodynamic and
acoustic cavitation, Sep. Purif. Technol., 209 (2019) 254–269.
- Q. Xiao, L. Ouyang, Photocatalytic activity and hydroxyl
radical formation of carbon-doped TiO2 nanocrystalline: effect
of calcination temperature, Chem. Eng. J., 148 (2009) 248–253.
- F. Laatar, H. Moussa, H. Alem, L. Balan, E. Girot, G. Medjahdi,
H. Ezzaouia, R. Schneider, CdSe nanorod/TiO2 nanoparticle
heterojunctions with enhanced solar- and visible-light photocatalytic
activity, Beilstein J. Nanotechnol., 8 (2017) 2741–2752.
- C. Su, C. Shao, Y. Liu, Electrospun nanofibers of TiO2/CdS
heteroarchitectures with enhanced photocatalytic activity by
visible light, J. Colloid Interface Sci., 359 (2011) 220–227.
- N.N. Bahrudin, M.A. Nawi, Immobilized titanium dioxide/powdered activated carbon system for the photocatalytic
adsorptive removal of phenol, Korean J. Chem. Eng., 35 (2018)
1532–1541.
- S.M. Boyer, J. Liu, S. Zhang, M.I. Ehrlich, D.L. McCarthy, L. Tong,
J.B. DeCoste, W.E. Bernier, W.E. Jones Jr., The role of ruthenium
photosensitizers in the degradation of phenazopyridine with
TiO2 electrospun fibers, J. Photochem. Photobiol., A, 329 (2016)
46–53.
- R. Vinu, S. Polisetti, G. Madras, Dye sensitized visible light
degradation of phenolic compounds, Chem. Eng. J., 165 (2010)
784–797.
- A. Hamdi, S. Boufi, S. Bouattour, Phthalocyanine/chitosan-TiO2
photocatalysts: characterization and photocatalytic activity,
Appl. Surf. Sci., 339 (2015) 128–136.
- A. Zyoud, N. Zaatar, I. Saadeddin, M.H. Helal, G. Campet,
M. Hakim, D. Park, H.S. Hilal, Alternative natural dyes in water
purification: Anthocyanin as TiO2-sensitizer in methyl orange
photo-degradation, Solid State Sci., 13 (2011) 1268–1275.
- N. Hashim, S. Thakur, M. Patang, F. Crapulli, A.K. Ray, Solar
degradation of diclofenac using eosin-Y-activated TiO2: cost
estimation, process optimization and parameter interaction
study, Environ. Technol., 38 (2017) 933–944.
- A. Islam, H. Sugihara, K. Hara, L.P. Singh, R. Katoh, M. Yanagida,
Y. Takahashi, S. Murata, H. Arakawa, Sensitization of
nanocrystalline TiO2 film by ruthenium(II) diimine dithiolate
complexes, J. Photochem. Photobiol., A, 145 (2001) 135–141.
- M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker,
E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of
light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)
ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-,
and SCN-) on nanocrystalline titanium dioxide electrodes,
J. Am. Chem. Soc., 115 (1993) 6382–6390.
- N.S. Kumar, A. Dhar, A.A. Ibrahim, R.L. Vekariya, P. Bhadja,
Designing and fabrication of phenothiazine and carbazole
based sensitizers for photocatalytic water splitting application,
Int. J. Hydrogen Energy, 43 (2018) 17057–17063.
- A. Tiwari, N.V. Krishna, L. Giribabu, U. Pal, Hierarchical porous
TiO2 embedded unsymmetrical zinc–phthalocyanine sensitizer
for visible-light-induced photocatalytic H2 production, J. Phys.
Chem. C, 122 (2018) 495–502.
- M.A. Nawi, A.H. Jawad, S. Sabar, W.S.W. Ngah, Immobilized
bilayer TiO2/chitosan system for the removal of phenol under
irradiation by a 45 watt compact fluorescent lamp, Desalination,
280 (2011) 288–296.
- M.A. Nawi, S. Sabar, A.H. Jawad, Sheilatina, W.S.W. Ngah,
Adsorption of Reactive Red 4 by immobilized chitosan on
glass plates: Towards the design of immobilized TiO2-chitosan
synergistic photocatalyst-adsorption bilayer system, Biochem.
Eng. J., 49 (2010) 317–325.
- S. Sabar, M.A. Nawi, Fabrication and application of an
immobilized TiO2/chitosan layer-by-layer system loaded with
Reactive Red 4 dye for the removal of phenol and its intermediates,
Desal. Wat. Treat., 57 (2016) 10312–10323.
- M.A. Nawi, Y.S. Ngoh, S.M. Zain, Photoetching of immobilized
TiO2-ENR50-PVC composite for improved photocatalytic activity,
Int. J. Photoenergy, 2012 (2012) 12 p.
- M.A. Nawi, S.M. Zain, Enhancing the surface properties of the
immobilized Degussa P-25 TiO2 for the efficient photocatalytic
removal of methylene blue from aqueous solution, Appl. Surf.
Sci., 258 (2012) 6148–6157.
- K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto,
Quantum yields of active oxidative species formed on TiO2
photocatalyst, J. Photochem. Photobiol., A, 134 (2000) 139–142.
- W.J. Jones, A. Grofcsik, M. Kubinyi, D. Thomas, Concentrationmodulated
absorption spectroscopy and the triplet state: Photoinduced
absorption/bleaching in erythrosin B, rose bengal and
eosin Y, J. Mol. Struct., 792 (2006) 121–129.
- S. Min, G. Lu, Dye-cosensitized graphene/Pt photocatalyst for
high efficient visible light hydrogen evolution, Int. J. Hydrogen
Energy, 37 (2012) 10564–10574.
- Y. Xu, M.A.A. Schoonen, The absolute energy positions of
conduction and valence bands of selected semiconducting
minerals, Am. Mineral., 85 (2000) 543–556.
- A. Sergawie, S. Admassie, W. Mammo, T. Yohannes, T. Solornon,
Synthesis and characterization of poly[3-(2’,5’-diheptyloxyphenyl)
thiophene] for use in photoelectrochemical cells,
Bull. Chem. Soc. Ethiop., 21 (2007) 405–417.
- M. Hu, Y. Xu, J. Zhao, Efficient photosensitized degradation
of 4-chlorophenol over immobilized aluminum tetrasulfophthalocyanine
in the presence of hydrogen peroxide, Langmuir,
20 (2004) 6302–6307.
- J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin,
F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence
performance of nano-sized semiconductor materials and its
relationships with photocatalytic activity, Sol. Energy Mater.
Sol. Cells, 90 (2006) 1773–1787.
- Y. Ku, Y.H. Huang, Y.C. Chou, Preparation and characterization
of ZnO/TiO2 for the photocatalytic reduction of Cr(VI) in
aqueous solution, J. Mol. Catal. A: Chem., 342–343 (2011) 18–22.
- I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic
degradation of azo dyes in aqueous solution: kinetic and
mechanistic investigations: a review, Appl. Catal., B, 49 (2004)
1–14.
- J. Zhao, C. Chen, W. Ma, Photocatalytic degradation of organic
pollutants under visible light irradiation, Top. Catal., 35 (2005)
269–278.
- C.H. Chiou, C.Y. Wu, R.S. Juang, Influence of operating parameters
on photocatalytic degradation of phenol in UV/TiO2
process, Chem. Eng. J., 139 (2008) 322–329.
- A. Rey, J. Carbajo, C. Adán, M. Faraldos, A. Bahamonde,
J.A. Casas, J.J. Rodriguez, Improved mineralization by combined
advanced oxidation processes, Chem. Eng. J., 174 (2011)
134–142.