References

  1. P. Weiss, E.C. Waldroup, J. Williams, M. Sweeney, J. Ren, Eutrophication and causation: an investigation of potassium nitrate and algae growth, J. Introductory Biol. Invest., 5 (2016) 3.
  2. S.F. Johnson, Methemoglobinemia: Infants at Risk, Current Problems in Pediatric and Adolescent Health Care, Elsevier, 49 (2019) 57–67.
  3. C. Tociu, E. Marcu, I.E. Ciobotaru, C. Maria, Risk assessment of population exposure to nitrates/nitrites in groundwater: a case study approach, Environ. Res. Prot., 13 (2016) 39–45.
  4. J.D. Brender, P.J. Weyer, Agricultural compounds in water and birth defects, Curr. Environ. Health Rep., 3 (2016) 144–152.
  5. J.-Y. Jeong, H.-K. Kim, J.-H. Kim, J.-Y. Park, Electrochemical removal of nitrate using ZVI packed bed bipolar electrolytic cell, Chemosphere, 89 (2012) 172–178.
  6. M.L. Bosko, M. Rodrigues, J.Z. Ferreira, E.E. Miró, A.M. Bernardes, Nitrate reduction of brines from water desalination plants by membrane electrolysis, J. Membr. Sci., 451 (2014) 276–284.
  7. J. Bohdziewicz, M. Bodzek, E. Wąsik, The application of reverse osmosis and nanofiltration to the removal of nitrates from groundwater, Desalination, 121 (1999) 139–147.
  8. A. Keränen, T. Leiviskä, B.-Y. Gao, O. Hormi, J. Tanskanen, Preparation of novel anion exchangers from pine sawdust and bark, spruce bark, birch bark and peat for the removal of nitrate, Chem. Eng. Sci., 98 (2013) 59–68.
  9. B. Ovez, S. Ozgen, M. Yuksel, Biological denitrification in drinking water using Glycyrrhiza glabra and Arunda donax as the carbon source, Process Biochem., 41 (2006) 1539–1544.
  10. X. Wang, J. Wang, Removal of nitrate from groundwater by heterotrophic denitrification using the solid carbon source, Sci. China, Ser. B Chem., 52 (2009) 236–240.
  11. C.A. Bode-Aluko, O. Pereao, G. Ndayambaje, L. Petrik, Adsorption of toxic metals on modified polyacrylonitrile nanofibres: a review, Water Air Soil Pollut., 228 (2017) 35.
  12. S. Mintova, N.H. Olson, V. Valtchev, T. Bein, Mechanism of zeolite A nanocrystal growth from colloids at room temperature, Science, 283 (1999) 958–960.
  13. S.C. Larsen, Nanocrystalline zeolites and zeolite structures: synthesis, characterization, and applications, J. Phys. Chem. C, 111 (2007) 18464–18474.
  14. D. Afzali, A. Mostafavi, M. Mirzaei, Preconcentration of gold ions from water samples by modified organo-nanoclay sorbent prior to flame atomic absorption spectrometry determination, J. Hazard. Mater., 181 (2010) 957–961.
  15. S. Awate, K. Suzuki, Enhanced adsorption capacity and photocatalytic oxidative activity of dyes in aqueous medium by hydrothermally treated titania pillared clay, Adsorption, 7 (2001) 319–326.
  16. H. Wang, B.A. Holmberg, Y. Yan, Homogeneous polymer– zeolite nanocomposite membranes by incorporating dispersible template-removed zeolite nanocrystals, J. Mater. Chem., 12 (2002) 3640–3643.
  17. S. Mallakpour, M. Dinari, Preparation and characterization of new organoclays using natural amino acids and Cloisite Na+, Appl. Clay Sci., 51 (2011) 353–359.
  18. S. Mallakpour, M. Dinari, Biomodification of cloisite Na+ with L‐methionine amino acid and preparation of poly (vinyl alcohol)/organoclay nanocomposite films, J. Appl. Polym. Sci., 124 (2012) 4322–4330.
  19. S. Mallakpour, M. Dinari, Novel nanocomposites based on reactive organoclay of l-tyrosine and amine end-capped poly (amide–imide): synthesis and characterization, Appl. Clay Sci., 75 (2013) 67–73.
  20. I. Calabrese, G. Cavallaro, G. Lazzara, M. Merli, L. Sciascia, M.L.T. Liveri, Preparation and characterization of bio-organoclays using nonionic surfactant, Adsorption, 22 (2016) 105–116.
  21. A. Khenifi, Z. Bouberka, F. Sekrane, M. Kameche, Z. Derriche, Adsorption study of an industrial dye by an organic clay, Adsorption, 13 (2007) 149–158.
  22. S. Dal Bosco, R. Jimenez, C. Vignado, J. Fontana, B. Geraldo, F. Figueiredo, D. Mandelli, W. Carvalho, Removal of Mn (II) and Cd (II) from wastewaters by natural and modified clays, Adsorption, 12 (2006) 133–146.
  23. K.G. Bhattacharyya, S.S. Gupta, Adsorption of Fe (III) from water by natural and acid activated clays: studies on equilibrium isotherm, kinetics and thermodynamics of interactions, Adsorption, 12 (2006) 185–204.
  24. Q. Fang, X. Zhou, W. Deng, Y. Liu, Z. Zheng, Z. Liu, Nitrogendoped graphene nanoscroll foam with high diffusion rate and binding affinity for removal of organic pollutants, Small, 13 (2017) 1603779.
  25. S. Lath, D. Navarro, D. Tran, A. Kumar, D. Losic, M.J. McLaughlin, Mixed-mode remediation of cadmium and arsenate ions using graphene‐based materials, CLEAN Soil Air Water, 46 (2018) 1800073.
  26. G. Yu, Y. Lu, J. Guo, M. Patel, A. Bafana, X. Wang, B. Qiu, C. Jeffryes, S. Wei, Z. Guo, E.K. Wujcik, Carbon nanotubes, graphene, and their derivatives for heavy metal removal, Adv. Compos. Hybrid Mater., 1 (2018) 56–78.
  27. P.S. Kumar, P. Yaashikaa, S. Ramalingam, Efficient Removal of Nitrate and Phosphate using Graphene Nanocomposites, A New Generation Material Graphene: Applications in Water Technology, Springer, Cham, 2019, pp. 287–307
  28. Y. Cao, X. Li, Adsorption of graphene for the removal of inorganic pollutants in water purification: a review, Adsorption, 20 (2014) 713–727.
  29. L. Wu, Z. Qin, L. Zhang, T. Meng, F. Yu, J. Ma, CNT-enhanced amino-functionalized graphene aerogel adsorbent for highly efficient removal of formaldehyde, New J. Chem., 41 (2017) 2527–2533.
  30. M. Dinari, R. Tabatabaeian, Ultra-fast and highly efficient removal of cadmium ions by magnetic layered double hydroxide/guargum bionanocomposites, Carbohydr. Polym., 192 (2018) 317–326.
  31. N.B. Dewage, A.S. Liyanage, C.U. Pittman Jr., D. Mohan, T. Mlsna, Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar, Bioresour. Technol., 263 (2018) 258–265.
  32. A.M. Bandpei, S.M. Mohseni, A. Sheikhmohammadi, M. Sardar, M. Sarkhosh, M. Almasian, M. Avazpour, Z. Mosallanejad, Z. Atafar, S. Nazari, Optimization of arsenite removal by adsorption onto organically modified montmorillonite clay: experimental and theoretical approaches, Korean J. Chem. Eng., 34 (2017) 376–383.
  33. L. Zhou, H. Chen, X. Jiang, F. Lu, Y. Zhou, W. Yin, X. Ji, Modification of montmorillonite surfaces using a novel class of cationic gemini surfactants, J. Colloid Interface Sci., 332 (2009) 16–21.
  34. R. Ahmad, A. Mirza, Synthesis of Guar gum/bentonite a novel bionanocomposite: isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye, J. Mol. Liq., 249 (2018) 805–814.
  35. M. Massoudinejad, M. Ghaderpoori, A. Shahsavani, A. Jafari, B. Kamarehie, A. Ghaderpoury, M.M. Amini, Ethylenediaminefunctionalized cubic ZIF-8 for arsenic adsorption from aqueous solution: modeling, isotherms, kinetics and thermodynamics, J. Mol. Liq., 255 (2018) 263–268.
  36. M. Massoudinejad, M. Ghaderpoori, A. Shahsavani, M.M. Amini, Adsorption of fluoride over a metal organic framework Uio-66 functionalized with amine groups and optimization with response surface methodology, J. Mol. Liq., 221 (2016) 279–286.
  37. E. Ahmadi, S. Yousefzadeh, M. Ansari, H.R. Ghaffari, A. Azari, M. Miri, A. Mesdaghinia, R. Nabizadeh, B. Kakavandi, P. Ahmadi, Performance, kinetic, and biodegradation pathway evaluation of anaerobic fixed film fixed bed reactor in removing phthalic acid esters from wastewater, Sci. Rep., 7 (2017) 41020.
  38. Y. Xi, M. Mallavarapu, R. Naidu, Preparation, characterization of surfactants modified clay minerals and nitrate adsorption, Appl. Clay Sci., 48 (2010) 92–96.
  39. M. Ge, X. Wang, M. Du, G. Liang, G. Hu, S.M. Jahangir Alam, Adsorption analyses of phenol from aqueous solutions using magadiite modified with organo-functional groups: kinetic and equilibrium studies, Materials, 12 (2019) 96.
  40. V. Fierro, V. Torné-Fernández, D. Montané, A. Celzard, Adsorption of phenol onto activated carbons having different textural and surface properties, Microporous Mesoporous Mater., 111 (2008) 276–284.
  41. S.M. Lee, D. Tiwari, Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: an overview, Appl. Clay Sci., 59 (2012) 84–102.