References

  1. H.H. Tran, F.A. Roddick, J.A. O’Donnell, Comparison of chromatography and desiccant silica gels for the adsorption of metal ions — I. adsorption and kinetics, Water Res., 33 (1999) 2992–3000.
  2. K. Mohanty, D. Das, M.N. Biswas, Preparation and characterization of activated carbons from Sterculia alata nutshell by chemical activation with zinc chloride to remove phenol from wastewater, Adsorption, 12 (2006) 119–132.
  3. K.G. Bhattacharyya, S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review, Adv. Colloid Interface Sci., 140 (2008) 114–131.
  4. M.O. Corapcioglu, C.P. Huang, The surface acidity and characterization of some commercial activated carbons, Carbon, 25 (1987) 569–578.
  5. M.S. El-Geundi, Adsorbents for industrial pollution control, Adsorpt. Sci. Technol., 15 (1997) 777–787.
  6. S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, A review of potentially low-cost sorbents for heavy metals, Water Res., 33 (1999) 2469–2479.
  7. D.C. Sharma, C.F. Forster, The treatment of chromium wastewaters using the sorptive potential of leaf mould, Bioresour. Technol., 49 (1994) 31–40.
  8. D.C. Sharma, C.F. Forster, Column studies into the adsorption of chromium (VI) using sphagnum moss peat, Bioresour. Technol., 52 (1995) 261–267.
  9. V.K. Gupta, A.K. Shrivastava, N. Jain, Biosorption of chromium (VI) from aqueous solutions by green algae spirogyra species, Water Res., 35 (2001) 4079–4085.
  10. S.J. Park, W.Y. Jung, Removal of chromium by activated carbon fibers plated with copper metal, Carbon Lett., 2 (2001) 15–21.
  11. K. Selvi, S. Pattabhi, K. Kadirvelu, Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon, Bioresour. Technol., 80 (2001) 87–89.
  12. F. Gode, E. Pehlivan, Adsorption of Cr(III) ions by Turkish brown coals, Fuel Process. Technol., 86 (2005) 875–884.
  13. E. Pehlivan, G. Arslan, Removal of metal ions using lignite in aqueous solution—low cost biosorbents, Fuel Process. Technol., 88 (2007) 99–106.
  14. T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Application of response surface methodology (RSM) for optimization of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ removal from aqueous solution using microwaved olive stone activated carbon, J. Chem. Technol. Biotechnol., 88 (2013) 2141–2151.
  15. T. Bohli, A. Ouederni, Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase, Environ. Sci. Pollut. Res., 23 (2016) 15852–15861.
  16. H. Hu, X. Li, P. Huang, Q. Zhang, W. Yuan, Efficient removal of copper from wastewater by using mechanically activated calcium carbonate, J. Environ. Manage., 203 (2017) 1–7.
  17. H. Mohammadifard, M.C. Amiri, Evaluating Cu(II) removal from aqueous solutions with response surface methodology by using novel synthesized CaCO3 nanoparticles prepared in a colloidal gas aphron system, Chem. Eng. Commun., 204 (2017) 476–484.
  18. M. Kong, L. Wang, J. Chao, Z. Ji, F. Peng, F. Yang, Y. Zhang, Removal of Cu2+ and Ni2+ from wastewater by using modified alkali-Leaching residual wire sludge as low-cost adsorbent, Water Air Soil Pollut., 230 (2019) 65.
  19. G. Taguchi, Introduction to Quality Engineering, UNIPUB/Krauss International, New York, 1986.
  20. A. Bendell, J. Disney, W.A. Pridmore, Taguchi Methods: Applications in World Industry, IFS Publications/Springer Verlag, UK, 1989.
  21. J.A. Ghani, I.A. Choudhury, H.H. Hassan, Application of Taguchi method in the optimization of end milling parameters, J. Mater. Process. Technol., 145 (2004) 84–92.
  22. D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Hoboken, NJ, 2017.
  23. Microwave Plasma–Atomic Emission Spectrometer (MP–AES) Model 4200, Agilent Technologies, Santa Clara, CA, US. Available at: http://www.agilent.com/en-us/products/mp-aes/mp-aes-systems/4200-mp-aes (Accessed 20 March 2019).
  24. Y.H. Chen, S.C. Tam, W.L. Chen, H.Y. Zheng, Application of the Taguchi method in the optimization of laser micro–engraving of photomasks, Int. J. Mater. Prod. Technol., 11 (1996) 333–344.
  25. M.S. Phadke, Quality Engineering Using Design of Experiments, Springer, Boston, MA, 1989.
  26. S.H. Park, Robust Design and Analysis for Quality Engineering, Chapman & Hall, London, 1996.
  27. Y.S. Tarng, W.H. Yang, Application of the Taguchi method to the optimization of the submerged arc welding process, Mater. Manuf. Processes, 13 (1998) 455–467.
  28. R.A. Fisher, Statistical Methods for Research Worker, Oliver & Boyd, London, 1925.
  29. C.Y. Nian, W.H. Yang, Y.S. Tarng, Optimization of turning operations with multiple performance characteristics, J. Mater. Process. Technol., 95 (1999) 90–96.
  30. W.H. Yang, Y.S. Tarng, Design optimization of cutting parameters for turning operations based on the Taguchi method, J. Mater. Process. Technol., 84 (1998) 122–129.
  31. U. Eşme, Application of Taguchi method for the optimization of resistance spot welding process, Arabian J. Sci. Eng., 34 (2009) 519–528.
  32. Ö. Gerçel, H.F. Gerçel, Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of euphorbia rigida, Chem. Eng. J., 132 (2007) 289–297.