References

  1. Water Pollution, Drinking Water and Drinking Water Treatment, J. Hrubec, Ed., Springer-Verlag, Berlin, Heidelberg, 1995.
  2. X. Zhang, C. Cui, S. Yu, Identifying oxidation intermediates fordem during ozone-UV of fulvic acid, Desal. Wat. Treat. 74 (2017) 258–268.
  3. Drinking Water Treatment, C. Ray, R Jain, Eds., Springer, Dordrecht, 2011.
  4. M. Kowalska, The Effectiveness of Removal of Haloacetic Acids from Water using Bioreactor with Native Enzymes, (Membranes and Membrane Processes in Environmental Protection), Monographs of Environmental Engineering Comitee, 2014, pp. 49–59.
  5. A. Włodyka-Bergier, T. Bergier, The influence of organic matter quality on the potential of volatile organic water chlorination products formation, Arch. Environ. Prot., 37 (2011) 25–35.
  6. J. Gregory, V. Duan, Properties of flocs produced by water treatment coagulants, Water Sci. Technol., 44 (2014) 231–236.
  7. C. Jung, H. Son, The relationship between disinfection by-products formation and characteristics of natural organic matter in raw water, Korean J. Chem. Eng., 25 (2008) 714–720.
  8. A. Włodyka-Bergier, T. Bergier, W. Zając, Assessment of applicability of UV irradiation in swimming pool water treatment – a case study, Environ. Prot., 39 (2017) 53–56.
  9. IARC - International Agency of Research on Cancer, 1991, 1999, 2002, 2004.
  10. Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption, Official Journal of the European Union L 330, 3 November 1998, pp. 90–112.
  11. Directive 2008/105/EC of European Parliament and of the Council on Environmental Quality Standards in the Field of Water Policy, Amending and Subsequently Repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and Amending Directive 2000/60/EC of the European Parliament and of the Council, Official Journal of the European Union L 348, 24 December 2008, pp. 84–97.
  12. M. Sadrnourmohammadi, B. Gorczyca, Effects of ozone as a stand-alone and coagulation-aid treatment on the reduction of trihalomethanes precursors from water with high DOC and low calcium hardness, Desal. Wat. Treat., 78 (2017) 117–126.
  13. M. Kabsch-Korbutowicz, A. Urbanowska, K. Majewska-Nowak, J. Kawiecka-Skowron, Removal of organic substances from aqueous solutions with the use of ceramic membrane, ROCZ OCHR SROD, 12 (2010) 467–478.
  14. A. Nowacka, M. Włodarczyk-Makuła, Effectiveness of priority PAH removal in a water coagulation process, Water Sci. Technol. Water Supply, 15 (2015) 683–692.
  15. M. Włodarczyk-Makuła, Physical and Chemical Fates of Organic Micropollutants, Scholar’s Press, OmniScriptum GmbH & Co., Saarbrucken, 2015.
  16. J. Duan, J. Gregory, Coagulation by hydrolysing metal salts, Adv. Colloid Interface Sci., 100–102 (2003) 475–502.
  17. A. Nowacka, M. Włodarczyk-Makuła, B. Macherzyński, Comparison of effectiveness of coagulation with aluminum sulfate and pre-hydrolyzed aluminum coagulants, Desal. Wat. Treat., 52 (2014) 3843–3851.
  18. A. Nowacka, M. Włodarczyk-Makuła, Impact of selected prehydrolyzed aluminum coagulants on improving of treated water quality, ROCZ OCHR SROD, 16 (2014b) 226–350.
  19. D. Pernitsky, J. Edzwald, Selection of alum and polyaluminum coagulants: principles and applications, J. Water Supply Res. Technol. AQUA, 55 (2006) 121–141.
  20. M. Rak, M. Świderska-Bróż, On the advantages of using prehydrolysed aluminum coagulants, Environ. Prot. Eng., 27 (2001) 5–17.
  21. J. Gumińska, M. Kłos, Analysis of post-coagulation properties of flocs in terms of coagulant choice, Environ. Prot. Eng., 38 (2012) 103–113.
  22. S. Sinha, Y. Yoon, G. Amy, J. Yoon, Determining the effectiveness of conventional and alternative coagulants through effective characterization schemes, Chemosphere, 57 (2004) 1115–1122.
  23. L. Zhanmeng, L. Simin, Z. Haixia, N. Fahui, W. Qunhui, Preparation, characterisation and coagulation behavior of a novel inorganic coagulant – polyferric(III)-magnesium(II)-sulfate, Environ. Prot. Eng., 39 (2013) 57–71.
  24. A. Nowacka, M. Włodarczyk-Makuła, Removal of oxidation and disinfection by-products of water, Ecol. Technol., 1 (2014a) 11–17. (in Polish).
  25. J. Edzwald, D. Pernitsky, W.L. Parmenter, Polyaluminum Coagulants for Drinking Water Treatment: Chemistry and Selection, Chemical Water and Wastewater Treatment, VI, Springer, 2000, pp. 3–14.
  26. D. Ghernaout, B. Ghernaout, A. Kellil, Natural organic matter removal and enhanced coagulation, Desal. Wat. Treat., 2 (2009) 203–222.
  27. International Standard, Water Quality – Examination and Determination of Colour, ISO 7887, 2011.
  28. B.B. Poter, Determination of Total Organic Carbon and Specific UV Absorbance at 254 nm in Source Water and Drinking Water, USEPA, 2005.
  29. A. Hasan, N.P. Thacker, J. Bassin, Trihalomethane formation potential in treated water supplies in urban metro city, Environ. Monit. Assess., 168 (2010) 489–497.
  30. I. Krupińska, Effect of the Type of Aluminium Coagulant on Effectiveness at Removing Pollutants from Groundwater in the Process of Coagulation, Section: Water Engineering 9th International Conference “Environmental Engineering”, Vilnus, Lithuania, May 22–23, 2014. VGTUPress. Available at: http://leidykla.vgtu.lt/conferences/ENVIRO_2014/Articles/2/082_Krupinska.pdf.
  31. O. Tsydenova, V. Batoev, A. Batoeva, Solar-enhanced advanced oxidation processes for water treatment: simultaneous removal of pathogens and chemical pollutants, Int. J. Environ. Res. Public Health, 12 (2015) 9542–9561.
  32. Q. Han, Y. Wang, H. Yan, B. Gao, D. Ma, S. Sun, J. Lin, Y. Chu, Photocatalysis of THM precursors in reclaimed water: the application of TiO2 in UV irradiation, Desal. Wat. Treat., 57 (2016) 9136–9147.