References
- S.G. Liu, J. Wang, W.T. Huang, X.C. Tan, H. Dong, B.A.
Goodman,
H. Du, F. Lei, K.S. Diao, Adsorption of phenolic
compounds from water by a novel ethylenediamine rosinbased
resin: interaction models and adsorption mechanisms,
Chemosphere, 214 (2019) 821–829.
- G. Collins, C. Foy, S. McHugh, T. Mahony, V. O’ Flaherty,
Anaerobic biological treatment of phenolic wastewater at
15–18°C, Water Res., 39 (2005) 1614–1620.
- R.R. Zapico, P. Marín, F.V. Díez, S. Ordóñez, Performance of
ceramic foams as gas-liquid contactors for phenol wet oxidation
in the trickle regime, Catal. Today, 273 (2016) 172–177.
- D. Zhang, A. Wei, J. Zhang, R. Qiu, The photocatalytic
interaction of Cr(VI) ions and phenol on polymer-modified
TiO2 under visible light irradiation, Kinet. Catal., 56 (2015)
569–573.
- A. Massa, S. Hernández, S. Ansaloni, M. Castellino, D. Fino,
Enhanced electrochemical oxidation of phenol over manganese
oxides under mild wet air oxidation conditions, Electrochim.
Acta, 27 (2018) 53–62.
- J.R. Steter, R.S. Rocha, D. Dionísio, M.R.V. Lanza, A.J. Motheo,
Electrochemical oxidation route of methyl paraben on a
boron-doped diamond anode, Electrochim. Acta, 117 (2014)
127–133.
- Y.Y. Lu, Y. Liu, B.W. Xia, W.Q. Zuo, Phenol oxidation by
combined cavitation water jet and hydrogen peroxide, Chem.
Eng. J., 20 (2012) 760–767.
- L. Vazquez-Gomez, S. Ferro, A.D. Battisti, Preparation and
characterization of RuO2-IrO2-SnO2 ternary mixtures for
advanced electrochemical technology, Appl. Catal., B, 67 (2006)
34–40.
- M.E. Makgae, C.C. Theron, W.J. Przybylowicz, A.M. Crouch,
Preparation and surface characterization of Ti/SnO2-RuO2-IrO2
thin films as electrode material for the oxidation of phenol,
Mater. Chem. Phys., 92 (2005) 559–564.
- F. Wang, Y.R. Hu, C. Guo, W. Huang, C.-Z. Liu, Enhanced
phenol degradation in coking wastewater by immobilized
laccase on magnetic mesoporous silica nanoparticles in a magnetically
stabilized fluidized bed, Bioresour. Technol., 110 (2012)
120–124.
- B. Jiang, S.N. Shi, L. Song, L. Tan, M.D. Li, J.X. Liu, L.L. Xue,
Efficient treatment of phenolic wastewater with high salinity
using a novel integrated system of magnetically immobilized
cells coupling, Bioresour. Technol., 218 (2016) 108–114.
- Y.Z. Liu, Chemical Engineering Process and Technology in high
Gravity, National Defense Industry Press, Beijing, 2009.
- Y.Z. Liu, Chemical Process Intensification-Methods and Technologies,
Chemical Industry Press, Beijing, 2017.
- J. Gao, J. Yan, Y. Liu, J. Zhang, Z. Guo, A novel electro-catalytic
degradation method of phenol wastewater with Ti/IrO2-Ta2O5
anodes in high-gravity fields, Water Sci. Technol., 76 (2017)
662–670.
- Y.Z. Liu, J. Gao, W.Z. Jiao, A high gravity electrochemical reactor
with multi-concentric cylindrical electrodes and continuous
operation process, China, ZL 201010033393.8, 2010.
- W. Jiao, L. Yu, Z. Feng, L. Guo, Y. Wang, Y. Liu, Optimization of
nitrobenzene wastewater treatment with O3/H2O2 in a rotating
packed bed using response surface methodology, Desal. Wat.
Treat., 57 (2016) 19996–20004.
- H. Cheng, K. Scott, An empirical model approach to gas
evolution reactions in a centrifugal field, J. Electroanal. Chem.,
544 (2003) 75–85.
- M.-Y. Wang, H.-Q. Xing, Z. Wang, Z.-C. Guo, Investigation of
chlor-alkali electrolysis intensified by super gravity, Acta. Phys.
Chim. Sin., 24 (2008) 520–526.
- A. Eftekhari, Enhanced stability and conductivity of polypyrrole
film prepared electrochemically in the presence of centrifugal
forces, Synth. Met., 142 (2004) 305–308.
- A. Mahito, M. Atsushi, H. Shingo, S. Yuichi, S. Michiko,
F. Toshio, C. Al-Nakib, N. Tsutomu, Anodic polymerization of
aromatic compounds in centrifugal fields, Electrochim. Acta,
50 (2004) 977–984.
- J. Gao, Y.Z. Liu, G.S. Qi, Y.D. Liu, W.Z. Jiao, Q.L. Zhang,
Behaviors of bubbles in the process of electrochemical reaction
under high gravity environment, Chem. Eng., 42 (2014) 1–6.
- N.N. Sun, S.T. Xie, K. Li, Y.W. Chen, S.B. Shen, Electrocatalytic
oxidation of phenol with RuO2-IrO2-SnO2/Ti anode, Environ.
Pollut. Contr., 37 (2015) 38–41.