References

  1. L. Adhamia, M. Mirzaeib, Removal of copper (II) from aqueous solution using granular sodium alginate/activated carbon hydrogel in a fixed-bed column, Desal. Wat. Treat., 103 (2018) 208–215.
  2. H. Dai, S. Ou, Y. Huang, Z. Liu, H. Huang, Enhanced swelling and multiple-responsive properties of gelatin/sodium alginate hydrogels by the addition of carboxymethyl cellulose isolated from pineapple peel, Cellulose, 25 (2018) 593–606.
  3. C. Broadhurst, W. Schmidt, J. Qin, K. Chao, M.S. Kim, Continuous gradient temperature Raman spectroscopy of fish oils provides detailed vibrational analysis and rapid. Nondestructive graphical product authentication, Molecules, 23 (2018) 3293.
  4. M. Sajdak, M. Kotyczka-Morańska, Development and validation of a fast method based on infrared spectroscopy for biochar quality assessment. Biomass Bioenerg., 112 (2018) 99–109.
  5. P. Xu, Research and application of near-infrared spectroscopy in rapid detection of water pollution, Desal. Wat. Treat., 122 (2018) 1–4.
  6. S. Karunathilaka, M. Arnold, G. Small, Nocturnal hypoglycemic alarm based on near-infrared spectroscopy: in vivo studies with a rat animal model, Anal. Chem., 91 (2019) 1855–1862.
  7. S. Thakur, B. Sharma, A. Verma, J. Chaudhary, S. Tamulevicius, V. Thakur, Recent progress in sodium alginate based sustainable hydrogels for environmental applications, J. Cleaner Prod., 198 (2018) 143–159.
  8. Y. Bai, Y. Lei, X. Shen, J. Luo, C. Yao, R. Sun, A facile sodium alginate-based approach to improve the mechanical properties of recycled fibers, Carbohydr. Polym., 174 (2017) 610–616.
  9. J. Xu, C. Zhang, T. Ge, Y. Dai, R. Wang, Performance study of sodium alginate-nonwoven fabric composite membranes for dehumidification, Appl. Therm. Eng., 128 (2018) 214–224.
  10. R. Okparanma, P. Araka, J. Ayotamuno, A. Mouazen, Towards enhancing sustainable reuse of pre-treated drill cuttings for construction purposes by near-infrared analysis: a review, J. Civ. Eng. Constr. Technol., 9 (2018) 19–39.
  11. K. Ye, Key feature recognition algorithm of network intrusion signal based on neural network and support vector machine, Symmetry, 11 (2019) 380.
  12. C. Jing, J. Hou, SVM and PCA based fault classification approaches for complicated industrial process, Neurocomputing, 167 (2015) 636–642.
  13. Y. Zheng, J. Wu, A. Wang, J. Chen, Object-and pixel-based classifications of macroalgae farming area with high spatial resolution imagery, Geocarto Int., 33 (2018) 1048–1063.
  14. Y. Ma, P. Qi, J. Ju, Q. Wang, L. Hao, R. Wang, Y. Tan, Gelatin/ alginate composite nanofiber membranes for effective and even adsorption of cationic dyes, Compos. Pt. B-Eng., 162 (2019) 671–677.
  15. L. Hao, R. Wang, Y. Zhao, K. Fang, Y. Cai, The enzymatic actions of cellulase on periodate oxidized cotton fabrics, Cellulose, 25 (2018) 6759–6769.
  16. V. Gururaj, V.R. Shriya, K. Ashwini, Stock market prediction using linear regression and support vector machines, Int. J. Appl. Eng. Res., 14 (2019) 1931–1934.