References
- M.T. Ayvaz, A hybrid simulation–optimization approach for
solving the areal groundwater pollution source identification
problems, J. Hydrol., 538 (2016) 161–176.
- J. Gao, L.-L. Yue, X. Jiang, L. Ni, M.F. Saleem, Y. Zhou, K. Li,
J. Xiao, Phylogeographic patterns of Microtus fortis (Arvicolinae:
Rodentia) in China based on mitochondrial DNA sequences,
Pak. J. Zool., 49 (2017) 1185–1195.
- A.J. Ahamed, K. Loganathan, S. Ananthakrishnan, J.K.C. Ahmed,
M.A. Ashraf, Evaluation of graphical and multivariate statistical
methods for classification and evaluation of groundwater,
Appl. Ecol. Environ. Res., 15 (2017) 105–116.
- K.S. Bhattacharjee, T. Ray, An Evolutionary Algorithm with
Classifier Guided Constraint Evaluation Strategy for Computationally
Expensive Optimization Problems, Australasian
Joint Conference on Artificial Intelligence, Springer, Cham, 2015,
pp. 49–62.
- W.X. Chen, T. Weise, Z. Yang, K. Tang, Large-scale Global
Optimization Using Cooperative Coevolution with Variable
Interaction Learning, International Conference on Parallel
Problem Solving from Nature, Springer, Berlin, Heidelberg,
2010, pp. 300–309.
- M. Sudhakaran, D. Ramamoorthy, V. Savitha, S. Balamurugan,
Assessment of trace elements and its influence on physicochemical
and biological properties in coastal agroecosystem
soil, Puducherry region, Geol. Ecol. Landscapes, 2 (2018)
169–176.
- W. Deng, H. Zhao, L. Zou, G. Li, X. Yang, D. Wu, A novel
collaborative optimization algorithm in solving complex
optimization
problems, Soft Comput., 21 (2017) 4387–4398.
- Z. Feng, Q. Zhang, Q. Zhang, Q. Tang, T. Yang, Y. Ma,
A multiobjective optimization based framework to balance the
global exploration and local exploitation in expensive optimization,
J. Global Optim., 61 (2015) 677–694.
- F. Qiao, Research on design principles of visual identity in
campus environment, Sci. Heritage J., 2 (2018) 1–3.
- J.E. Fieldsend, R.M. Everson, On the Efficient Use of Uncertainty
When Performing Expensive ROC Optimization, Evolutionary
Computation, CEC 2008 (IEEE World Congress on
Computational Intelligence), Hong Kong, 2008, pp. 3984–3991.
- J. Gu, M. Gu, C. Cao, X. Gu, A novel competitive co-evolutionary
quantum GA for random job shop scheduling problem, Comp.
Oper. Res., 37 (2010) 927–937.
- N.S. Ramli, N.H.M. Zin, Alpha-amylase inhibitory activity of
inhibitor proteins in different types of commercial rice, Sci.
Heritage J., 2 (2018) 27–29.
- J. Guan, M.M. Aral, M.L. Maslia, W.M. Grayman, Identification
of contaminant sources in water distribution systems using
simulation-optimization method: case study, J. Water Resour.
Plann. Manage., 132 (2006) 252–262.
- W.D. Hillis, Co-evolving parasites improve simulated evolution
as an optimization procedure, Physica D, 42 (1990) 228–234.
- C. Hu, J. Zhao, X. Yan, A Map, Reduce based Parallel Niche
GA for contaminant source identification in water distribution
network, Ad Hoc Networks, 35 (2015) 116–126.
- T.D.T. Oyedotun, L. Johnson-Bhola, Beach litter and grading of
the coastal landscape for tourism development in sections of
Guyana’s coast, J. CleanWAS, 3 (2019) 1–9.
- S. Jeong, S. Obayashi, Efficient Global Optimization (EGO) for
Multi-Objective Problem and Data Mining, IEEE Congress on
Evolutionary Computation, Edinburgh UK, 2005, pp. 2138–2145.
- Y. Jin, M. Olhofer, B. Sendhoff, A framework for evolutionary
optimization with approximate fitness functions, IEEE Trans.
Evol. Comput., 6 (2002) 481–494.
- D.R. Jones, M. Schonlau, W.J. Welch, Efficient global optimization
of expensive black-box functions, J. Global Optim., 13 (1998)
455–492.
- J. Ali, A.A.J. Mohamed, M.S.A. Kumar, B.A. John, Organophosphorus
pesticides toxicity on brine shrimp, Artemia,
J. Clean WAS, 2 (2018) 23–26.
- A.J. Keane, Statistical improvement criteria for use in
multiobjective design optimization, AIAA J., 44 (2006) 879–891.
- Y. Li, Z.H. Zhan, S. Lin, J. Zhang, X. Luo, Competitive and
cooperative particle swarm optimization with information
sharing
mechanism for global optimization problems, Inf. Sci.,
293 (2015) 370–382.
- B. Liu, Q. Zhang, G.G.E. Gielen, A Gaussian process surrogate
model assisted evolutionary algorithm for medium scale
expensive optimization problems, IEEE Trans. Evol. Comput.,
18 (2014) 180–192.
- O.T. Joseph, O.O. Adeoti, A.A. Olufemi, Study of the phytodiversity
along Antorun Reservoir, near Ogbomoso, Nigeria,
Environ. Ecosyst. Sci., 3 (2019) 1–12.
- L. Liu, S.R. Ranjithan, G. Mahinthakumar, Contamination
source identification in water distribution systems using an
adaptive dynamic optimization procedure, J. Water Resour.
Plann. Manage., 137 (2010) 183–192.
- W. Liu, Q. Zhang, E. Tsang, B. Virginas, Fuzzy Clustering
Based Gaussian Process Model for Large Training Set and its
Application in Expensive Evolutionary Optimization, IEEE
Congress on Evolutionary Computation, Cec. Trondheim,
Norway, 2009, pp. 2411–2415.
- M. Wilson, M.A. Ashraf, Study of fate and transport of emergent
contaminants at wastewater treatment plant, Environ. Contam.
Rev., 1 (2018) 1–12.
- C. Luo, S.-L. Zhang, C. Wang, Z. Jiang, A metamodel-assisted
evolutionary algorithm for expensive optimization, J. Comput.
Appl. Math., 236 (2011) 759–764.
- M.J. OmaraShahestan, S. OmaraShastani, Evaluating environmental
considerations with checklist and delphi methods, case
study: Suran city, Iran, Environ. Ecosyst. Sci., 1 (2017) 1–4.
- M.N. Omidvar, X. Li, Y. Mei, X. Yao, Cooperative co-evolution
with differential grouping for large scale optimization, IEEE
Trans. Evol. Comput., 18 (2014) 378–393.
- G.G. Mahmood, H. Rashid, S. Anwar, A. Nasir, Evaluation of
climate change impacts on rainfall patterns in Pothohar Region
of Pakistan, Water Conserv. Manage., 3 (2019) 1–6.
- A. Ostfeld, J.G. Uber, E. Salomons, J.W. Berry, W.E. Hart,
C.A. Phillips, J.P. Watson, G. Dorini, P. Jonkergouw, Z. Kapelan,
F.D. Pierro, S.T. Khu, D. Savic, D. Eliades, M. Polycarpou,
S.R. Ghimire, B.D. Barkdoll, R. Gueli, J.J. Huang, E.A. McBean,
W. James, A. Krause, J. Leskovec, S. Isovitsch, J. Xu, C. Guestrin,
J. VanBriesen, M. Small, P. Fischbeck, A. Preis, M. Propato,
O. Piller, G.B. Trachtman, Z.Y. Wu, T. Walski, The battle of the water
sensor networks (BWSN): a design challenge for engineers and
algorithms, J. Water Resour. Plann. Manage., 134 (2008) 556–568.
- I. Paenke, J. Branke, Y. Jin, Efficient search for robust solutions
by means of evolutionary algorithms and fitness approximation,
IEEE Trans. Evol. Comput., 10 (2006) 405–420.
- X. Peng, Y. Wu, Large-scale cooperative co-evolution using
niching-based multi-modal optimization and adaptive fast
clustering, Swarm Evol. Comput., 35 (2017) 65–77.
- N.S. Zafisah, W.L. Ang, A.W. Mohammad, Cake filtration for
suspended solids removal in digestate from anaerobic digested
palm oil mill effluent (POME), Water Conserv. Manage., 2
(2018) 5–9.
- W. Ponweiser, T. Wagner, D. Biermann, Multiobjective Optimization
on a Limited Budget of Evaluations Using Model-Assisted
S-Metric Selection, International Conference on Parallel Problem
Solving from Nature: PPSN X, Springer, Berlin, Heidelberg,
2008, pp. 784–794.
- M.A. Potter, K.A. De Jong, A Cooperative Co-evolutionary
Approach to Function Optimization, International Conference
on Parallel Problem Solving from Nature, Springer, Berlin,
Heidelberg, 1994, pp. 249–257.
- R.G. Regis, C.A. Shoemaker, Local function approximation in
evolutionary algorithms for the optimization of costly functions,
IEEE Trans. Evol. Comput., 8 (2004) 490–505.
- H.K. Singh, A. Isaacs, T. Ray, A Hybrid Surrogate-based
Algorithm (HSBA) to Solve Computationally Expensive Optimization
Problems, Evolutionary Computation (CEC), 2014
IEEE Congress, 2014, pp. 1069–1075.
- R. Subbu, A.C. Sanderson, Modeling and convergence analysis
of distributed co-evolutionary algorithms, IEEE Trans. Syst.
Man Cybern. Part B Cybern., 34 (2004) 806–822.
- C. Sun, Y. Jin, R. Cheng, J. Ding, J. Zeng, Surrogate-assisted
cooperative swarm optimization of high-dimensional expensive
problems, IEEE Trans. Evol. Comput., 21 (2017) 644–660.
- Y. Tenne, C.K. Goh, Computational Intelligence in Expensive
Optimization Problems, Springer, Berlin, Heidelberg, 2012.
- L. Wang, S. Wang, Y. Xu, G. Zhou, M. Liu, A bi-population based
estimation of distribution algorithm for the flexible job-shop
scheduling problem, Comput. Ind. Eng., 62 (2012) 917–926.
- Q.X. Wei, X.F. Liu, Q. Huang, The comparison of selection
methods in different GAs, J. Commun. Comput., Chinese/English Version, 8 (2008) 61–65.
- X. Yan, J. Zhao, C. Hu, Q. Wu, Contaminant source identification
in water distribution network based on hybrid encoding,
J. Comput. Methods Sci. Eng., 16 (2016) 379–390.
- X. Yan, J. Sun, C. Hu, Research on contaminant sources identification
of uncertainty water demand using GA, Cluster
Comput., 20 (2017) 1007–1016.
- X. Yan, Z. Zhu, T. Li, Pollution source localization in an urban
water supply network based on dynamic water demand,
Environ. Sci. Pollut. Res., 26 (2019) 17901–17910.
- X. Yan, T. Li, C. Hu, Real-time localization of pollution source
for urban water supply network in emergencies, Cluster
Comput., (2018). https://doi.org/10.1007/s10586-018-1725-y.
- X. Yan, W. Gong, Q. Wu, Contaminant source identification
of water distribution networks using cultural algorithm, Concurrency
Comput. Pract. Experience, (2017). doi: 10.1002/cpe.4230.
- X. Yan, J. Zhao, C. Hu, D. Zeng, Multimodal optimization
problem in contamination source determination of water supply
networks, Swarm Evol. Comput., 47 (2019) 66–71.
- A. Zhou, Q. Zhang, Y. Jin, Approximating the set of Paretooptimal
solutions in both the decision and objective spaces
by an estimation of distribution algorithm, IEEE Trans. Evol.
Comput., 13 (2009) 1167–1189.
- Z. Zhou, Y.S. Ong, P.B. Nair, A.J. Keane, K.Y. Lum, Combining
global and local surrogate models to accelerate evolutionary
optimization, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.,
37 (2007) 66–76.