References

  1. M.T. Ayvaz, A hybrid simulation–optimization approach for solving the areal groundwater pollution source identification problems, J. Hydrol., 538 (2016) 161–176.
  2. J. Gao, L.-L. Yue, X. Jiang, L. Ni, M.F. Saleem, Y. Zhou, K. Li, J. Xiao, Phylogeographic patterns of Microtus fortis (Arvicolinae: Rodentia) in China based on mitochondrial DNA sequences, Pak. J. Zool., 49 (2017) 1185–1195.
  3. A.J. Ahamed, K. Loganathan, S. Ananthakrishnan, J.K.C. Ahmed, M.A. Ashraf, Evaluation of graphical and multivariate statistical methods for classification and evaluation of groundwater, Appl. Ecol. Environ. Res., 15 (2017) 105–116.
  4. K.S. Bhattacharjee, T. Ray, An Evolutionary Algorithm with Classifier Guided Constraint Evaluation Strategy for Computationally Expensive Optimization Problems, Australasian Joint Conference on Artificial Intelligence, Springer, Cham, 2015, pp. 49–62.
  5. W.X. Chen, T. Weise, Z. Yang, K. Tang, Large-scale Global Optimization Using Cooperative Coevolution with Variable Interaction Learning, International Conference on Parallel Problem Solving from Nature, Springer, Berlin, Heidelberg, 2010, pp. 300–309.
  6. M. Sudhakaran, D. Ramamoorthy, V. Savitha, S. Balamurugan, Assessment of trace elements and its influence on physicochemical and biological properties in coastal agroecosystem soil, Puducherry region, Geol. Ecol. Landscapes, 2 (2018) 169–176.
  7. W. Deng, H. Zhao, L. Zou, G. Li, X. Yang, D. Wu, A novel collaborative optimization algorithm in solving complex optimization problems, Soft Comput., 21 (2017) 4387–4398.
  8. Z. Feng, Q. Zhang, Q. Zhang, Q. Tang, T. Yang, Y. Ma, A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization, J. Global Optim., 61 (2015) 677–694.
  9. F. Qiao, Research on design principles of visual identity in campus environment, Sci. Heritage J., 2 (2018) 1–3.
  10. J.E. Fieldsend, R.M. Everson, On the Efficient Use of Uncertainty When Performing Expensive ROC Optimization, Evolutionary Computation, CEC 2008 (IEEE World Congress on Computational Intelligence), Hong Kong, 2008, pp. 3984–3991.
  11. J. Gu, M. Gu, C. Cao, X. Gu, A novel competitive co-evolutionary quantum GA for random job shop scheduling problem, Comp. Oper. Res., 37 (2010) 927–937.
  12. N.S. Ramli, N.H.M. Zin, Alpha-amylase inhibitory activity of inhibitor proteins in different types of commercial rice, Sci. Heritage J., 2 (2018) 27–29.
  13. J. Guan, M.M. Aral, M.L. Maslia, W.M. Grayman, Identification of contaminant sources in water distribution systems using simulation-optimization method: case study, J. Water Resour. Plann. Manage., 132 (2006) 252–262.
  14. W.D. Hillis, Co-evolving parasites improve simulated evolution as an optimization procedure, Physica D, 42 (1990) 228–234.
  15. C. Hu, J. Zhao, X. Yan, A Map, Reduce based Parallel Niche GA for contaminant source identification in water distribution network, Ad Hoc Networks, 35 (2015) 116–126.
  16. T.D.T. Oyedotun, L. Johnson-Bhola, Beach litter and grading of the coastal landscape for tourism development in sections of Guyana’s coast, J. CleanWAS, 3 (2019) 1–9.
  17. S. Jeong, S. Obayashi, Efficient Global Optimization (EGO) for Multi-Objective Problem and Data Mining, IEEE Congress on Evolutionary Computation, Edinburgh UK, 2005, pp. 2138–2145.
  18. Y. Jin, M. Olhofer, B. Sendhoff, A framework for evolutionary optimization with approximate fitness functions, IEEE Trans. Evol. Comput., 6 (2002) 481–494.
  19. D.R. Jones, M. Schonlau, W.J. Welch, Efficient global optimization of expensive black-box functions, J. Global Optim., 13 (1998) 455–492.
  20. J. Ali, A.A.J. Mohamed, M.S.A. Kumar, B.A. John, Organophosphorus pesticides toxicity on brine shrimp, Artemia, J. Clean WAS, 2 (2018) 23–26.
  21. A.J. Keane, Statistical improvement criteria for use in multiobjective design optimization, AIAA J., 44 (2006) 879–891.
  22. Y. Li, Z.H. Zhan, S. Lin, J. Zhang, X. Luo, Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems, Inf. Sci., 293 (2015) 370–382.
  23. B. Liu, Q. Zhang, G.G.E. Gielen, A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems, IEEE Trans. Evol. Comput., 18 (2014) 180–192.
  24. O.T. Joseph, O.O. Adeoti, A.A. Olufemi, Study of the phytodiversity along Antorun Reservoir, near Ogbomoso, Nigeria, Environ. Ecosyst. Sci., 3 (2019) 1–12.
  25. L. Liu, S.R. Ranjithan, G. Mahinthakumar, Contamination source identification in water distribution systems using an adaptive dynamic optimization procedure, J. Water Resour. Plann. Manage., 137 (2010) 183–192.
  26. W. Liu, Q. Zhang, E. Tsang, B. Virginas, Fuzzy Clustering Based Gaussian Process Model for Large Training Set and its Application in Expensive Evolutionary Optimization, IEEE Congress on Evolutionary Computation, Cec. Trondheim, Norway, 2009, pp. 2411–2415.
  27. M. Wilson, M.A. Ashraf, Study of fate and transport of emergent contaminants at wastewater treatment plant, Environ. Contam. Rev., 1 (2018) 1–12.
  28. C. Luo, S.-L. Zhang, C. Wang, Z. Jiang, A metamodel-assisted evolutionary algorithm for expensive optimization, J. Comput. Appl. Math., 236 (2011) 759–764.
  29. M.J. OmaraShahestan, S. OmaraShastani, Evaluating environmental considerations with checklist and delphi methods, case study: Suran city, Iran, Environ. Ecosyst. Sci., 1 (2017) 1–4.
  30. M.N. Omidvar, X. Li, Y. Mei, X. Yao, Cooperative co-evolution with differential grouping for large scale optimization, IEEE Trans. Evol. Comput., 18 (2014) 378–393.
  31. G.G. Mahmood, H. Rashid, S. Anwar, A. Nasir, Evaluation of climate change impacts on rainfall patterns in Pothohar Region of Pakistan, Water Conserv. Manage., 3 (2019) 1–6.
  32. A. Ostfeld, J.G. Uber, E. Salomons, J.W. Berry, W.E. Hart, C.A. Phillips, J.P. Watson, G. Dorini, P. Jonkergouw, Z. Kapelan, F.D. Pierro, S.T. Khu, D. Savic, D. Eliades, M. Polycarpou, S.R. Ghimire, B.D. Barkdoll, R. Gueli, J.J. Huang, E.A. McBean, W. James, A. Krause, J. Leskovec, S. Isovitsch, J. Xu, C. Guestrin, J. VanBriesen, M. Small, P. Fischbeck, A. Preis, M. Propato, O. Piller, G.B. Trachtman, Z.Y. Wu, T. Walski, The battle of the water sensor networks (BWSN): a design challenge for engineers and algorithms, J. Water Resour. Plann. Manage., 134 (2008) 556–568.
  33. I. Paenke, J. Branke, Y. Jin, Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation, IEEE Trans. Evol. Comput., 10 (2006) 405–420.
  34. X. Peng, Y. Wu, Large-scale cooperative co-evolution using niching-based multi-modal optimization and adaptive fast clustering, Swarm Evol. Comput., 35 (2017) 65–77.
  35. N.S. Zafisah, W.L. Ang, A.W. Mohammad, Cake filtration for suspended solids removal in digestate from anaerobic digested palm oil mill effluent (POME), Water Conserv. Manage., 2 (2018) 5–9.
  36. W. Ponweiser, T. Wagner, D. Biermann, Multiobjective Optimization on a Limited Budget of Evaluations Using Model-Assisted S-Metric Selection, International Conference on Parallel Problem Solving from Nature: PPSN X, Springer, Berlin, Heidelberg, 2008, pp. 784–794.
  37. M.A. Potter, K.A. De Jong, A Cooperative Co-evolutionary Approach to Function Optimization, International Conference on Parallel Problem Solving from Nature, Springer, Berlin, Heidelberg, 1994, pp. 249–257.
  38. R.G. Regis, C.A. Shoemaker, Local function approximation in evolutionary algorithms for the optimization of costly functions, IEEE Trans. Evol. Comput., 8 (2004) 490–505.
  39. H.K. Singh, A. Isaacs, T. Ray, A Hybrid Surrogate-based Algorithm (HSBA) to Solve Computationally Expensive Optimization Problems, Evolutionary Computation (CEC), 2014 IEEE Congress, 2014, pp. 1069–1075.
  40. R. Subbu, A.C. Sanderson, Modeling and convergence analysis of distributed co-evolutionary algorithms, IEEE Trans. Syst. Man Cybern. Part B Cybern., 34 (2004) 806–822.
  41. C. Sun, Y. Jin, R. Cheng, J. Ding, J. Zeng, Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems, IEEE Trans. Evol. Comput., 21 (2017) 644–660.
  42. Y. Tenne, C.K. Goh, Computational Intelligence in Expensive Optimization Problems, Springer, Berlin, Heidelberg, 2012.
  43. L. Wang, S. Wang, Y. Xu, G. Zhou, M. Liu, A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem, Comput. Ind. Eng., 62 (2012) 917–926.
  44. Q.X. Wei, X.F. Liu, Q. Huang, The comparison of selection methods in different GAs, J. Commun. Comput., Chinese/English Version, 8 (2008) 61–65.
  45. X. Yan, J. Zhao, C. Hu, Q. Wu, Contaminant source identification in water distribution network based on hybrid encoding, J. Comput. Methods Sci. Eng., 16 (2016) 379–390.
  46. X. Yan, J. Sun, C. Hu, Research on contaminant sources identification of uncertainty water demand using GA, Cluster Comput., 20 (2017) 1007–1016.
  47. X. Yan, Z. Zhu, T. Li, Pollution source localization in an urban water supply network based on dynamic water demand, Environ. Sci. Pollut. Res., 26 (2019) 17901–17910.
  48. X. Yan, T. Li, C. Hu, Real-time localization of pollution source for urban water supply network in emergencies, Cluster Comput., (2018). https://doi.org/10.1007/s10586-018-1725-y.
  49. X. Yan, W. Gong, Q. Wu, Contaminant source identification of water distribution networks using cultural algorithm, Concurrency Comput. Pract. Experience, (2017). doi: 10.1002/cpe.4230.
  50. X. Yan, J. Zhao, C. Hu, D. Zeng, Multimodal optimization problem in contamination source determination of water supply networks, Swarm Evol. Comput., 47 (2019) 66–71.
  51. A. Zhou, Q. Zhang, Y. Jin, Approximating the set of Paretooptimal solutions in both the decision and objective spaces by an estimation of distribution algorithm, IEEE Trans. Evol. Comput., 13 (2009) 1167–1189.
  52. Z. Zhou, Y.S. Ong, P.B. Nair, A.J. Keane, K.Y. Lum, Combining global and local surrogate models to accelerate evolutionary optimization, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., 37 (2007) 66–76.