References
- J.M. Galloway, G.T. Swindles, H.E. Jamieson, M. Palmer,
M.B. Parsons, H. Sanei, A.L. Macumber, R. Timothy Patterson,
H. Falck, Organic matter control on the distribution of arsenic in
lake sediments impacted by ~ 65years of gold ore processing in
subarctic Canada, Sci. Total Environ., 622–623 (2018) 1668–1679.
- N.P. Nikolaidis, G.M. Dobbs, J. Chen, J.A. Lackovic, Arsenic
mobility in contaminated lake sediments, Environ. Pollut.,
129 (2004) 479–487.
- J. Unda-Calvo, M. Martínez-Santos, E. Ruiz-Romera, Chemical
and physiological metal bioaccessibility assessment in surface
bottom sediments from the Deba River urban catchment:
harmonization of PBET, TCLP and BCR sequential extraction
methods, Ecotoxicol. Environ. Saf., 138 (2017) 260–270.
- H.-H. Li, L.-J. Chen, L. Yu, Z.-B. Guo, C.-Q. Shan, J.-Q. Lin,
Y.-G. Gu, Z.-B. Yang, Y.-X. Yang, J.-R. Shao, X.-M. Zhu,
Z. Cheng, Pollution characteristics and risk assessment of
human exposure to oral bioaccessibility of heavy metals via
urban street dusts from different functional areas in Chengdu,
China, Sci. Total Environ., 586 (2017) 1076–1084.
- C.C. Azubuike, C.B. Chikere, G.C. Okpokwasili, Bioremediation
techniques–classification based on site of application: principles,
advantages, limitations and prospects, World J. Microbiol.
Biotechnol., 32 (2016) 180.
- B. Song, G. Zeng, J. Gong, J. Liang, P. Xu, Z. Liu, Y. Zhang,
C. Zhang, M. Cheng, Y. Liu, S. Ye, H. Yi, X. Ren, Evaluation
methods for assessing effectiveness of in situ remediation of
soil and sediment contaminated with organic pollutants and
heavy metals, Environ. Int., 105 (2017) 43–55.
- C.W. Gray, S.J. Dunham, P.G. Dennis, F.J. Zhao, S.P. McGrath,
Field evaluation of in situ remediation of a heavy metal
contaminated
soil using lime and red-mud, Environ. Pollut.,
142 (2006) 530–539.
- M.R. Lasheen, N.S. Ammar, Ex situ remediation technology
for heavy metals in contaminated sediment, Desal. Wat. Treat.,
57 (2016) 827–834.
- S. Raicevic, J.V. Wright, V. Veljkovic, J.L. Conca, Theoretical
stability assessment of uranyl phosphates and apatites: Selection
of amendments for in situ remediation of uranium, Sci.
Total Environ., 355 (2006) 13–24.
- E. Lombi, F.-J. Zhao, G. Zhang, B. Sun, W. Fitz, H. Zhang,
S.P. McGrath, In situ fixation of metals in soils using bauxite
residue: chemical assessment, Environ. Pollut., 118 (2002)
435–443.
- R.K. Mohan, M.P. Brown, C.R. Barnes, Design criteria and
theoretical basis for capping contaminated marine sediments,
Appl. Ocean Res., 22 (2000) 85–93.
- D.W. Himmelheber, M. Taillefert, K.D. Pennell, J.B. Hughes,
Spatial and temporal evolution of biogeochemical processes
following in situ capping of contaminated sediments, Environ.
Sci. Technol., 42 (2008) 4113–4120.
- H. Vidgren, A. Helland, A. Lepland, Sand cap placement and
cap thickness monitoring: a case study at a confined disposal
facility, Remediation, 25 (2015) 69–84.
- M. Taneez, C. Hurel, F. Mady, P. Francour, Capping of marine
sediments with valuable industrial by-products: Evaluation of
inorganic pollutants immobilization, Environ. Pollut., 239 (2018)
714–721.
- Y.Y. Kim, A.S. Schenk, D. Walsh, A.N. Kulak, O. Cespedes,
F.C. Meldrum, Bio-inspired formation of functional calcite/
metal oxide nanoparticle composites, Nanoscale, 6 (2014)
852–859.
- S. Doudou, D.J. Vaughan, F.R. Livens, N.A. Burton, Atomistic
simulations of calcium uranyl(VI) carbonate adsorption on calcite
and stepped-calcite surfaces, Environ. Sci. Technol., 46 (2012)
7587–7594.
- Y. Liu, X. Sheng, Y.H. Dong, Y.J. Ma, Removal of highconcentration
phosphate by calcite: Effect of sulfate and pH,
Desalination, 289 (2012) 66–71.
- Y.H. Song, P.G. Weidler, U. Berg, R. Nuesch, D. Donnert, Calciteseeded
crystallization of calcium phosphate for phosphorus
recovery, Chemosphere, 63 (2006) 236–243.
- X.F. Yu, M.R. Grace, G.Z. Sun, Y.C. Zou, Application of
ferrihydrite and calcite as composite sediment capping materials
in a eutrophic lake, J. Soils Sediments, 18 (2018) 1185–1193.
- J.A. Davis, C.C. Fuller, A.D. Cook, A model for trace metal
sorption processes at the calcite surface: adsorption of Cd2+ and
subsequent solid solution formation, Geochim. Cosmochim.
Acta, 51 (1987) 1477–1490.
- J.M. Zachara, C.E. Cowan, C.T. Resch, Sorption of divalent
metals on calcite, Geochim. Cosmochim. Acta, 55 (1991) 1549–1562.
- A.J. Tesoriero, J.F. Pankow, Solid solution partitioning of Sr2++,
Ba2+, and Cd2+ to calcite, Geochim. Cosmochim. Acta, 60 (1996)
1053–1063.
- J.M. Zachara, J.A. Kittrick, J.B. Harsh, The mechanism of Zn2+
adsorption on calcite, Geochim. Cosmochim. Acta, 52 (1988)
2281–2291.
- J. Paquette, R.J. Reeder, New type of compositional zoning
in calcite: insights into crystal-growth mechanisms, Geology,
18 (1990) 1244–1247.
- A. Godelitsas, J.M. Astilleros, K. Hallam, S. Harissopoulos,
A. Putnis, Interaction of calcium carbonates with lead in
aqueous solutions, Environ. Sci. Technol., 37 (2003) 3351–3360.
- U. Berg, T. Neumann, D. Donnert, R. Nüesch, D. Stüben,
Sediment capping in eutrophic lakes – efficiency of undisturbed
calcite barriers to immobilize phosphorus, Appl. Geochem.,
19 (2004) 1759–1771.
- J. Lin, Y. Zhan, Z. Zhu, Evaluation of sediment capping with
active barrier systems (ABS) using calcite/zeolite mixtures to
simultaneously manage phosphorus and ammonium release,
Sci. Total Environ., 409 (2011) 638–646.
- ACSSS, Agrochemistry Committee of Soil Science Society
(ACSSS) of China: Conventional Method of Soil Agrochemistry
Analysis, Chinese Environmental Science Publishing House,
Beijing, 1983 (in Chinese).
- S. Wang, X. Jin, Q. Bu, L. Jiao, F. Wu, Effects of dissolved oxygen
supply level on phosphorus release from lake sediments,
Colloids Surf., A, 316 (2008) 245–252.
- C.H. Guo, H.X. Li, F. Fang, Y.S. Ji, Y.X. Xing, Y.B. Fan, Y. Liu,
Study on distribution of phosphorus fractions and adsorptiondesorption
characteristics in surface sediments of the Yellow
River by molybdenum antimony spectrophotometry, Spectrosc.
Spectral Anal., 38 (2018) 218–223.
- B. Gong, P. Wu, Z. Huang, Y. Li, S. Yang, Z. Dang, B. Ruan,
C. Kang, Efficient inhibition of heavy metal release from mine
tailings against acid rain exposure by triethylenetetramine
intercalated montmorillonite (TETA-Mt), J. Hazard. Mater.,
318 (2016) 396–406.
- USEPA, Method 1311: Toxicity Characteristic Leaching
Procedure. Part of Test Methods for Evaluating Solid Waste,
Physical/Chemical Methods, Washington D.C., 1993.
- A. Tessier, P.G.C. Campbell, M. Bisson, Sequential extraction
procedure for the speciation of particulate trace-metals, Anal.
Chem., 51 (1979) 844–851.
- Y. Yan, F. Qi, B. Seshadri, Y. Xu, J. Hou, Y.S. Ok, X. Dong, Q. Li,
X. Sun, L. Wang, N. Bolan, Utilization of phosphorus loaded
alkaline residue to immobilize lead in a shooting range soil,
Chemosphere, 162 (2016) 315–323.
- L. Zhang, Z. Xu, Application of vacuum reduction and
chlorinated distillation to enrich and prepare pure germanium
from coal fly ash, J. Hazard. Mater., 321 (2017) 18–27.
- M. Hegedus, E. Toth-Bodrogi, J. Jonas, J. Somlai, T. Kovacs,
Mobility of Th-232 and Po-210 in red mud, J. Environ. Radioact.,
184 (2018) 71–76.
- M. Hegedűs, Z. Sas, E. Tóth-Bodrogi, T. Szántó, J. Somlai,
T. Kovács, Radiological characterization of clay mixed red
mud in particular as regards its leaching features, J. Environ.
Radioact., 162–163 (2016) 1–7.
- National Institute of Advanced Industrial Science and Technology,
Atlas of Eh-pH Diagrams, Naoto TAKENO, 2005.
- C.C. Ainsworth, P.L. Gassman, J.L. Pilon, W.G. Van Der Sluys,
Cobalt, cadmium, and lead sorption to hydrous iron oxide:
residence time effect, Soil Sci. Soc. Am. J., 58 (1994) 1615–1623.
- R.D. van der Weijden, J. Meima, R.N.J. Comans, Sorption and
sorption reversibility of cadmium on calcite in the presence of
phosphate and sulfate, Mar. Chem., 57 (1997) 119–132.
- P.M. Schosseler, B. Wehrli, A. Schweiger, Uptake of Cu2+ by the
calcium carbonates vaterite and calcite as studied by continuous
wave (cw) and pulse electron paramagnetic resonance, Geochim.
Cosmochim. Acta, 63 (1999) 1955–1967.
- S.L. Stipp, M.F. Hochella, G.A. Parks, J.O. Leckie, Cd2+ uptake by
calcite, solid-state diffusion, and the formation of solid-solution:
Interface processes observed with near-surface sensitive
techniques (XPS, LEED, and AES), Geochim. Cosmochim. Acta,
56 (1992) 1941–1954.
- U. Hoffmann, S.L.S. Stipp, The behavior of Ni2+ on calcite
surfaces, Geochim. Cosmochim. Acta, 65 (2001) 4131–4139.
- USEPA, Code of Federal Regulations (Annual Edition): Title
40 - Protection of Environment, Section 261.24 – Toxicity
Characteristic, in: EPA, Ed., 2011.
- J.Y. Yang, X.E. Yang, Z.L. He, T.Q. Li, J.L. Shentu, P.J. Stoffella,
Effects of pH, organic acids, and inorganic ions on lead
desorption from soils, Environ. Pollut., 143 (2006) 9–15.
- Z.-L. Ren, M. Tella, M.N. Bravin, R.N.J. Comans, J. Dai,
J.-M. Garnier, Y. Sivry, E. Doelsch, A. Straathof, M.F. Benedetti,
Effect of dissolved organic matter composition on metal
speciation in soil solutions, Chem. Geol., 398 (2015) 61–69.
- Y. Iyaka, Nickel in soils: a review of its distribution and impacts,
Sci. Res. Essays, 6 (2011) 6774–6777.
- Z. Wu, Z. Gu, X. Wang, L. Evans, H. Guo, Effects of organic
acids on adsorption of lead onto montmorillonite, goethite
and humic acid, Environ. Pollut., 121 (2003) 469–475.