References

  1. M.F. Tay, C. Liu, E.R. Cornelissen, B. Wu, T.H. Chong, The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process, Water Res., 129 (2018) 180–189.
  2. Z. Ma, T. Lei, X. Ji, X. Gao, C. Gao, Submerged membrane bioreactor for vegetable oil wastewater treatment, Chem. Eng. Technol., 38 (2015) 101–109.
  3. A. Saxena, B.P. Tripathi, M. Kumar, V.K. Shahi, Membranebased techniques for the separation and purification of proteins: an overview, Adv. Colloid Interface Sci., 145 (2008) 1–22.
  4. R. Molinari, L. Palmisano, V. Loddo, S. Mozia, A.W. Morawski, 21 - Photocatalytic Membrane Reactors: Configurations, Performance and Applications in Water Treatment and Chemical Production, A. Basile, Ed., Handbook of Membrane Reactors, Reactor Types and Industrial Applications, Vol. 2, Woodhead Publishing Limited, 2013, pp. 808–845, ISBN 978-0-85709-415-5.
  5. C. Emin, E. Kurnia, I. Katalia, M. Ulbricht, Polyarylsulfonebased blend ultrafiltration membranes with combined size and charge selectivity for protein separation, Sep. Purif. Technol., 193 (2018) 127–138.
  6. M. Bhadra, S. Mitra, Advances in Nanostructured Membranes for Water Desalination, Chapter 7, In: Nanotechnology Applications for Clean Water, 2nd ed., Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, NJ, USA, 2014, pp. 109–122.
  7. S.H. Jia, Z. Ma, J. Qin, H.S. Si, C.-S. Toh, Inline coagulation–ultrafiltration as the pretreatment for reverse osmosis brine treatment and recovery, Desalination, 365 (2015) 242–249.
  8. K.L. Zhou, X.J. Wang, Z. Ma, X.J. Lu, Z.P. Wang, L.G. Wang, Preparation and characterization of modified polyvinylidene fluoride/2-amino-4-thiazoleacetic acid ultrafiltration membrane for purification of Cr(VI) in water, J. Chem. Eng. Jpn, 51 (2018) 501–506.
  9. X. Wang, K. Zhou, Z. Ma, X. Lu, L. Wang, Z. Wang, X. Gao, Preparation and characterization of novel polyvinylidene fluoride/2-aminobenzothiazole modified ultrafiltration membrane for the removal of Cr(VI) in wastewater, Polymers, 10 (2018) 1–9.
  10. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 5358 (1972) 238–237.
  11. S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, H. Wang, TiO2 based photocatalytic membranes: a review, J. Membr. Sci., 472 (2014) 167–184.
  12. Y. Zhao, N. Hoivik, K. Wang, Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting, Nano Energy, 30 (2016) 728–744.
  13. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95 (1995) 735–758.
  14. C.S. Uyguner-Demirel, N.C. Birben, M. Bekbolet, Elucidation of background organic matter matrix effect on photocatalytic treatment of contaminants using TiO2: a review, Catal. Today, 284 (2017) 202–214.
  15. K.Z. Qi, B. Cheng, J.G. Yu, W.K. Ho, A review on TiO2-based Z-scheme photocatalysts, Chin. J. Catal., 38 (2017) 1936–1955.
  16. S. Zhao, W. Yan, M. Shi, Z. Wang, J. Wang, S. Wang, Improving permeability and antifouling performance of polyethersulfone ultrafiltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone, J. Membr. Sci., 478 (2015) 105–116.
  17. C. Liao, P. Yu, J. Zhao, L. Wang, Y. Luo, Preparation and characterization of NaY/PVDF hybrid ultrafiltration membranes containing silver ions as antibacterial materials, Desalination, 272 (2011) 59–65.
  18. D. Darowna, R. Wróbel, A.W. Morawski, S. Mozia, The influence of feed composition on fouling and stability of a polyethersulfone ultrafiltration membrane in a photocatalytic membrane reactor, Chem. Eng. J., 310 (2017) 360–367.
  19. G. Ming, Z. Na, Y. Zhao, L. Jing, L. Lu, Sunlight-assisted degradation of dye pollutants in Ag3PO4 suspension, Ind. Eng. Chem. Res., 51 (2012) 5167–5173.
  20. Q. Liang, W. Ma, Y. Shi, Z. Li, X. Yang, Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate, Cryst Eng Comm, 14 (2012) 2966–2973.
  21. S. Tokunaga, H. Kato, A. Kudo, Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties, Chem. Mater., 33 (2002) 8–9.
  22. J. Yu, A. Kudo, Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4, Adv. Funct. Mater., 16 (2010) 2163–2169.
  23. C. Zhang, Y. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts, Chem. Mater., 17 (2010) 3537–3545.
  24. J. Tang, Z. Zou, J. Ye, Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation, Catal. Lett., 92 (2004) 53–56.
  25. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8 (2009) 76–80.
  26. Z. Miao, S. Tao, Y. Wang, Y. Yu, C. Meng, Y. An, Hierarchically porous silica as an efficient catalyst carrier for high performance vis-light assisted Fenton degradation, Microporous Mesoporous Mater., 176 (2013) 178–185.
  27. J.Z. Yao, C.L. Li, L.N. Lu, L.W. Bing, A facile and low-cost synthesis of granulated blast furnace slag-based cementitious material coupled with Fe2O3 catalyst for treatment of dye wastewater, Appl. Catal., B, 138–139 (2013) 9–16.
  28. V.K. Gupta, D. Pathania, S. Agarwal, P. Singh, Adsorptional photocatalytic degradation of methylene blue onto pectin–CuS nanocomposite under solar light, J. Hazard. Mater., 243 (2012) 179–186.
  29. H. Huang, J. Zhang, L. Jiang, Z. Zang, Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B, J. Alloys Compd., 718 (2017) 112–115.
  30. C. Kong, B. Ma, K. Liu, W. Zhang, Z. Yang, Continuous UV irradiation synthesis of ultra-small Au nanoparticles decorated Cu2O with enhanced photocatalytic activity, Compos. Commun., 9 (2018) 27–32.
  31. M. Aslam, G. Gopakumar, T.L. Shoba, I.S. Mulla, K. Vijayamohanan, S.K. Kulkarni, J. Urban, W. Vogel, Formation of Cu and Cu2O nanoparticles by variation of the surface ligand: preparation, structure, and insulating-to-metallic transition, J. Colloid Interface Sci., 255 (2002) 79–90.
  32. M. Montero-Munoz, J.E. Ramos-Ibarra, J.E. Rodriguez- Paez, M.D. Teodoro, G.E. Marques, A.R. Sanabria, P.C. Cajas, C.A. Paez, B. Heinrichs, J.A.H. Coaquira, Role of defects on the enhancement of the photocatalytic response of ZnO nanostructures, Appl. Surf. Sci., 448 (2018) 646–654.
  33. X.P. Li, Y.L. Sun, C.W. Luo, Z.S. Chao, UV-resistant hydrophobic CeO2 nanomaterial with photocatalytic depollution performance, Ceram. Int., 44 (2018) 13439–13443.
  34. Z.Y. Ye, L.Y. Kong, F. Chen, Z.G. Chen, Y. Lin, C.B. Liu, A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes, Optik, 164 (2018) 345–354.
  35. X. He, Y. Cai, H. Zhang, C. Liang, Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response, J. Mater. Chem., 21 (2010) 475–480.
  36. B. Naik, M.K. Sun, H.J. Chan, Y.M. Song, H.K. Sang, J.Y. Park, Enhanced H2 generation of Au-loaded, nitrogen-doped TiO2 hierarchical nanostructures under visible light, Adv. Mater. Interfaces, 1 (2014)1–6.
  37. N. Rahimi, R.A. Pax, E.M. Gray, Review of functional titanium oxides. I: TiO2 and its modifications, Prog. Solid State Chem., 44 (2016) 86–105.
  38. A.J. Haider, R.H. Al-Anbari, G.R. Kadhim, C.T. Salame, Exploring potential environmental applications of TiO2 nanoparticles, Energy Procedia, 119 (2017) 332–345.
  39. S.S. Arbuj, Synthesis of nanostructured TiO2 photocatalyst for H2 generation, J. Nanoeng. Nanomanuf., 5 (2015) 232–238.
  40. Z. Junbo, W. Jianli, T. Lin, G. Maochu, Z. Liu, C. Yaoqiang, Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4: kinetic model and degradation mechanisms, J. Hazard. Mater., 139 (2007) 323–331.
  41. Z. Shayegan, C.-S. Lee, F. Haghighat, TiO2 photocatalyst for removal of volatile organic compounds in gas phase – a review, Chem. Eng. J., 334 (2018) 2408–2439.
  42. J. Kim, D. Monllor-Satoca, W. Choi, Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components, Energy Environ. Sci., 5 (2012) 7647–7656.
  43. X. Zhang, D.K. Wang, J.C.D. da Costa, Recent progresses on fabrication of photocatalytic membranes for water treatment, Catal. Today, 230 (2014) 47–54.
  44. W. Zhang, L. Ding, J. Luo, M.Y. Jaffrin, B. Tang, Membrane fouling in photocatalytic membrane reactors (PMRs) for water and wastewater treatment: a critical review, Chem. Eng. J., 302 (2016) 446–458.
  45. R. Molinari, C. Lavorato, P. Argurio, Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review, Catal. Today, 281 (2017) 144–164.
  46. R. Janssens, M.K. Mandal, K.K. Dubey, P. Luis, Slurry photocatalytic membrane reactor technology for removal of pharmaceutical compounds from wastewater: towards cytostatic drug elimination, Sci. Total Environ., 612 (2017) 599–600.
  47. F. Chen, W. Zou, W. Qu, J. Zhang, Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process, Catal. Commun., 10 (2009) 1510–1513.
  48. A.V. Rosario, E.C. Pereira, The role of Pt addition on the photocatalytic activity of TiO2 nanoparticles: the limit between doping and metallization, Appl. Catal., B, 144 (2014) 840–845.
  49. S.N.R. Inturi, T. Boningari, M. Suidan, P.G. Smirniotis, Visiblelight- induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2, Appl. Catal., B, 144 (2014) 333–342.
  50. S.A. Ibrahim, M.N. Ahmid, Influence of calcination temperature towards Fe-TiO2 for visible-driven photocatalyst, Mater. Sci. Forum, 888 (2017) 435–440.
  51. Y. Lin, Y. Cai, E. Drioli, Y. Fan, Enhancing mechanical and photocatalytic performances on TiO2/Ti composite ultrafiltration membranes via Ag doping method, Sep. Purif. Technol., 145 (2015) 29–38.
  52. Q. Wang, C. Yang, G. Zhang, L. Hu, P. Wang, Photocatalytic Fe-doped TiO2/PSF composite UF membranes: characterization and performance on BPA removal under visible-light irradiation, Chem. Eng. J., 319 (2017) 39–47.
  53. Z. Xu, S. Ye, G. Zhang, W. Li, C. Gao, C. Shen, Q. Meng, Antimicrobial polysulfone blended ultrafiltration membranes prepared with Ag/Cu2O hybrid nanowires, J. Membr. Sci., 509 (2016) 83–93.
  54. H.R. Rajabi, O. Khani, M. Shamsipur, V. Vatanpour, Highperformance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation, J. Hazard. Mater., 250–251 (2013) 370–378.
  55. W. Zhao, Z. Jing, G. Zhang, L. Xi, H. Wu, Z. Hao, Controlled synthesis of Zn(1−1.5x)FexS nanoparticles via a microwave route and their photocatalytic properties, RSC Adv., 5 (2015) 106644–106650.
  56. Y. Chun-Yan, W. Qiao, Z. Guang-Shan, W. Peng, Preparation of photocatalytic composite ultrafiltration membrane and its properties under simulated solar irradiation, Chin. Environ. Sci., 12 (2017) 4564–4570.
  57. X. Wang, S. Meng, X. Zhang, H. Wang, W. Zhong, Q. Du, Multitype carbon doping of TiO2 photocatalyst, Chem. Phys. Lett., 444 (2007) 292–296.
  58. Z. Ying, Z. Zhao, J. Chen, C. Li, J. Chang, W. Sheng, C. Hu, S. Cao, C-doped hollow TiO2 spheres: in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity, Appl. Catal., B, 165 (2015) 715–722.
  59. C.P. Athanasekou, N.G. Moustakas, S. Morales-Torres, L.M. Pastrana-Martínez, J.L. Figueiredo, J.L. Faria, A.M.T. Silva, J.M. Dona-Rodriguez, G.E. Romanos, P. Falaras, Ceramic photocatalytic membranes for water filtration under UV and visible light, Appl. Catal., B, 178 (2015) 12–19.
  60. M. Behpour, R. Foulady-Dehaghi, N. Mir, Considering photocatalytic activity of N/F/S-doped TiO2 thin films in degradation of textile waste under visible and sunlight irradiation, Sol. Energy, 158 (2017) 636–643.
  61. X. Chen, D.-H. Kuo, D. Lu, Visible light response and superior dispersed S-doped TiO2 nanoparticles synthesized via ionic liquid, Adv. Powder Technol., 28 (2017) 1213–1220.
  62. M. Pelaez, A.A. de la Cruz, E. Stathatos, P. Falaras, D.D. Dionysiou, Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water, Catal. Today, 144 (2009) 19–25.
  63. R. Silveyra, L. De La Torre Sáenz, W.A. Flores, V.C. Martínez, A.A. Elguézabal, Doping of TiO2 with nitrogen to modify the interval of photocatalytic activation towards visible radiation, Catal. Today, 107 (2005) 602–605.
  64. Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, Deep-level optical spectroscopy investigation of N-doped TiO2 films, Appl. Phys. Lett., 86 (2005) 132104.
  65. A. Nambu, J. Graciani, J.A. Rodriguez, Q. Wu, E. Fujita, S. J Fdez, N doping of TiO2(110): photoemission and densityfunctional studies, J. Chem. Phys., 125 (2006) 094706.
  66. L.M. Pastrana-Martínez, S. Morales-Torres, J.L. Figueiredo, J.L. Faria, A.M.T. Silva, Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water, Water Res., 77 (2015) 179–190.
  67. Z. Zhou, W.G. Wang, W. Huang, W.H. Jing, W.H. Xing, Fabrication of mesoporous N-TiO2 membrane and its spectral characteristics, Adv. Mater. Res., 79–82 (2009) 791–794.
  68. H.-H. Cheng, S.-S. Chen, Y.-W. Cheng, W.-L. Tseng, Y.-H. Wang, Liquid-phase non-thermal plasma-prepared N-doped TiO2 for azo dye degradation with the catalyst separation system by ceramic membranes, Water Sci. Technol., 62 (2010) 1060–1066.
  69. F. Petronella, S. Rtimi, R. Comparelli, R. Sanjines, C. Pulgarin, M.L. Curri, J. Kiwi, Uniform TiO2/In2O3 surface films effective in bacterial inactivation under visible light, J. Photochem. Photobiol., A, 279 (2014) 1–7.
  70. Z. Jiang, D. Jiang, Z. Yan, D. Liu, K. Qian, J. Xie, A new visible light active multifunctional ternary composite based on TiO2–In2O3 nanocrystals heterojunction decorated porous graphitic carbon nitride for photocatalytic treatment of hazardous pollutant and H2 evolution, Appl. Catal., B, 170–171 (2015) 195–205.
  71. D. Sánchez-Rodríguez, M.G.M. Medrano, H. Remita, V. Escobar-Barrios, Photocatalytic properties of BiOCl-TiO2 composites for phenol photodegradation, J. Environ. Chem. Eng., 6 (2018) 1601–1612.
  72. Y. Bessekhouad, D. Robert, J.-V. Weber, Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions, Catal. Today, 101 (2005) 315–321.
  73. N. Wei, H. Cui, Q. Song, L. Zhang, X. Song, K. Wang, Y. Zhang, J. Li, J. Wen, J. Tian, Ag2O nanoparticle/TiO2 nanobelt heterostructures with remarkable photo-response and photocatalytic properties under UV, visible and near-infrared irradiation, Appl. Catal., B, 198 (2016) 83–90.
  74. W. Chang, L. Yan, B. Liu, R. Sun, Photocatalyic activity of double pore structure TiO2/SiO2 monoliths, Ceram. Int., 43 (2017) 5881–5886.
  75. A. Pal, T.K. Jana, K. Chatterjee, Silica supported TiO2 nanostructures for highly efficient photocatalytic application under visible light irradiation, Mater. Res. Bull., 76 (2016) 353–357.
  76. D. Dvoranova, M. Mazur, I. Papailias, T. Giannakopoulou, C. Trapalis, V. Brezová, EPR investigations of G-C3N4/TiO2 nanocomposites, Catalysts, 8 (2018) 47.
  77. J. Tian, P. Hao, N. Wei, H. Cui, H. Liu, 3D Bi2MoO6 Nanosheet/TiO2 nanobelt heterostructure: enhanced photocatalytic activities and photoelectochemistry performance, ACS Catal., 5 (2015) 4530–4536.
  78. S. Yu, Y. Wang, F. Sun, R. Wang, Y. Zhou, Novel mpg-C3N4/TiO2 nanocomposite photocatalytic membrane reactor for sulfamethoxazole photodegradation, Chem. Eng. J., 337 (2018) 183–192.
  79. L. Chi, Y. Qian, J. Guo, X. Wang, H. Arandiyan, Z. Jiang, Novel g-C3N4/TiO2/PAA/PTFE ultrafiltration membrane enabling enhanced antifouling and exceptional visible-light photocatalytic self-cleaning, Catal. Today, (2019), doi: https://doi. org/10.1016/j.cattod.2019.02.027, (In Press).
  80. H. Sun, G. Zhou, S. Liu, H.M. Ang, M.O. Tadé, S. Wang, Visible light responsive titania photocatalysts codoped by nitrogen and metal (Fe, Ni, Ag, or Pt) for remediation of aqueous pollutants, Chem. Eng. J., 231 (2013) 18–25.
  81. K. Govindan, S. Murugesan, P. Maruthamuthu, Photocatalytic degradation of pentachlorophenol in aqueous solution by visible light sensitive N–F-codoped TiO2 photocatalyst, Mater. Res. Bull., 48 (2013) 1913–1919.
  82. D.-G. Huang, S.-J. Liao, J.-M. Liu, Z. Dang, L. Petrik, Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method, J. Photochem. Photobiol., A, 184 (2006) 282–288.
  83. J.-W. Xu, Z.-D. Gao, K. Han, Y. Liu, Y.-Y. Song, Synthesis of magnetically separable Ag3PO4/TiO2/Fe3O4 heterostructure with enhanced photocatalytic performance under visible light for photoinactivation of bacteria, ACS Appl. Mater. Interfaces, 6 (2014) 15122–15131.
  84. X. Cao, W. Jing, W. Xing, Y. Fan, Y. Kong, J. Dong, Fabrication of a visible-light response mesoporous TiO2 membrane with superior water permeability via a weak alkaline sol–gel process, Chem. Commun., 47 (2011) 3457–3459.
  85. A.T. Kuvarega, N. Khumalo, D. Dlamini, B.B. Mamba, Polysulfone/N,Pd co-doped TiO2 composite membranes for photocatalytic dye degradation, Sep. Purif. Technol., 191 (2018) 122–133.
  86. W. Chen, T. Ye, H. Xu, T. Chen, N. Geng, X. Gao, An ultrafiltration membrane with enhanced photocatalytic performance from grafted N–TiO2/graphene oxide, RSC Adv., 7 (2017) 9880–9887.
  87. H. Xu, M. Ding, S. Liu, Y. Li, Z. Shen, K. Wang, Preparation and characterization of novel polysulphone hybrid ultrafiltration membranes blended with N-doped GO/TiO2 nanocomposites, Polymer, 117 (2017) 198–207.
  88. Y. Chen, W. Huang, D. He, S. Yue, H. Huang, Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation, ACS Appl. Mater. Interfaces, 6 (2014) 14405–14414.
  89. H. Xu, M. Ding, W. Chen, Y. Li, K. Wang, Nitrogen–doped GO/TiO2 nanocomposite ultrafiltration membranes for improved photocatalytic performance, Sep. Purif. Technol., 195 (2018) 70–82.
  90. C. Wang, C. Shao, L. Wang, L. Zhang, X. Li, Y. Liu, Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers, J. Colloid Interface Sci., 333 (2009) 242–248.
  91. S.S. Dunkle, R.J. Helmich, K.S. Suslick, BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis, J. Phys. Chem. C, 113 (2009) 11980–11983.
  92. U. Sulaeman, H. Pratiwi, A. Riapanitra, P. Iswanto, S. Yin, T. Sato, Hydrothermal synthesis and photocatalytic properties of BiPO4/Ag3PO4 heterostructure for phenol decomposition, Adv. Mater. Res., 911 (2014) 92–96.
  93. H. Li, Y. Cui, W. Hong, High photocatalytic performance of BiOI/Bi2WO6 toward toluene and reactive brilliant red, Appl. Surf. Sci., 264 (2013) 581–588.
  94. M. Takeuchi, H. Yamagawa, M. Matsuoka, M. Anpo, Photocatalytic oxidation of acetaldehyde by hybrid Pt/WO3–MOR photocatalysts under visible or sunlight irradiation, Res. Chem. Intermed., 40 (2014) 23–31.
  95. A. Tanaka, K. Hashimoto, H. Kominami, Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation, J. Am. Chem. Soc., 136 (2014) 586–589.
  96. T. Belin, N. Millot, N. Bovet, M. Gailhanou, In situ and time resolved study of the γ/α-Fe2O3 transition in nanometric particles, J. Solid State Chem., 180 (2007) 2377–2385.
  97. Y. Tong, L. Lu, X. Yang, X. Wang, Characterization and their photocatalytic properties of Ln2Zr2O7 (Ln = La, Nd, Sm, Dy, Er) nanocrystals by stearic acid method, Solid State Sci., 10 (2008) 1379–1383.
  98. L. Zhou, Y. Tao, L. Du, W. Zhang, Role of calcination on sol-gel synthesis of porous Sm2Ti2O7 for photocatalytic decolorization of RBR X-3B, Curr. Nanosci., 13 (2017) 506–512.
  99. S. Qian, Porous CuO hollow microspheres: one-step preparation and photocatalytic performance, Chin. J. Inogr. Chem., 28 (2012) 1043–1049.
  100. P.H. Lin, X.H. Du, Y.H. Chen, H.C. Chen, J.C. Huang, Nanoscaled diffusional or dislocation creep analysis of singlecrystal ZnO, AIP Adv., 6 (2016) 095125.
  101. Q. Shao, M.C. Yang, G.E. Sheng-Song, W.U. Ya-Lin, Y.Y. Wang, L.W. Bao, Polystyrene-assisted hydrothermal preparation of ZnO tubes with high photocatalytic activity, Chin. J. Inogr. Chem., 30 (2014) 2601–2606.
  102. X. Hao, Y. Wang, J. Zhou, Z. Cui, Y. Wang, Z. Zou, Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution, Appl. Catal., B, 221 (2018) 302–311.
  103. M. Saranya, R. Ramachandran, E.J.J. Samuel, S.K. Jeong, A.N. Grace, Enhanced visible light photocatalytic reduction of organic pollutant and electrochemical properties of CuS catalyst, Powder Technol., 279 (2015) 209–220.
  104. R. Chen, P. Wang, J. Chen, C. Wang, Y. Ao, Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation, Appl. Surf. Sci., 473 (2019) 11–19.
  105. P. Huo, C. Liu, D. Wu, J. Guan, J. Li, H. Wang, Q. Tang, X. Li, Y. Yan, S. Yuan, Fabricated Ag/Ag2S/reduced graphene oxide composite photocatalysts for enhancing visible light photocatalytic and antibacterial activity, J. Ind. Eng. Chem., 57 (2018) 125–133.
  106. X. Zhang, Z. Ai, A. Falong Jia, L. Zhang, Generalized onepot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres, J. Phys. Chem. C, 112 (2008) 747–753.
  107. Z. Shan, W. Wang, X. Lin, H. Ding, F. Huang, Photocatalytic degradation of organic dyes on visible-light responsive photocatalyst PbBiO2Br, J. Solid State Chem., 181 (2008) 1361–1366.
  108. B. Zhang, G. Ji, Y. Liu, M.A. Gondal, X. Chang, Efficient adsorption and photocatalytic pceerformance of flower-like three-dimensional (3D) I-doped BiOClBr photocatalyst, Catal. Commun., 36 (2013) 25–30.
  109. E. Zhang, L. Wang, B. Zhang, Y. Xie, C. Sun, C. Chen, Y. Zhang, G. Wang, Modification of polyvinylidene fluoride membrane with different shaped α-Fe2O3 nanocrystals for enhanced photocatalytic oxidation performance, Mater. Chem. Phys., 214 (2018) 41–47.
  110. R. Singh, V.S.K. Yadav, M.K. Purkait, Cu2O photocatalyst modified antifouling polysulfone mixed matrix membrane for ultrafiltration of protein and visible light driven photocatalytic pharmaceutical removal, Sep. Purif. Technol., 212 (2019) 191–204.
  111. J. Madhavan, F. Grieser, M.A. Kumar, Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments, J. Hazard. Mater, 178 (2010) 202–208.
  112. M. Kazemi, M. Jahanshahi, M. Peyravi, Chitosan-sodium alginate multilayer membrane developed by Fe0@WO3 nanoparticles: Photocatalytic removal of hexavalent chromium, Carbohydr. Polym., 198 (2018) 164–174.
  113. S.N. Ramanan, N. Shahkaramipour, T. Tran, L. Zhu, S.R. Venna, C.-K. Lim, A. Singh, P.N. Prasad, H. Lin, Self-cleaning membranes for water purification by co-deposition of photo-mobile 4,4'-azodianiline and bio-adhesive polydopamine, J. Membr. Sci., 554 (2018) 164–174.
  114. M.A. Mohamed, W.N.W. Salleh, J. Jaafar, A.F. Ismail, M.A. Mutalib, N.A.A. Sani, S.E.A.M. Asri, C.S. Ong, Physicochemical characteristic of regenerated cellulose/N-doped TiO2 nanocomposite membrane fabricated from recycled newspaper with photocatalytic activity under UV and visible light irradiation, Chem. Eng. J., 284 (2016) 202–215.
  115. X. Wu, J. Cheng, X. Li, Y. Li, K. Lv, Enhanced visible photocatalytic oxidation of NO by repeated calcination of g-C3N4, Appl. Surf. Sci., 465 (2019) 1037–1046.
  116. S. Yu, J. Liu, W. Zhu, Z.T. Hu, T.T. Lim, X. Yan, Facile roomtemperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation, Sci. Rep., 5 (2015) 16369.
  117. C. Hu, M.-S. Wang, C.-H. Chen, Y.-R. Chen, P.-H. Huang, K.-L. Tung, Phosphorus-doped g-C3N4 integrated photocatalytic membrane reactor for wastewater treatment, J. Membr. Sci., 580 (2019) 1–11.
  118. Y. Xiaoju, B. Ruiling, Y. Shuili, Effect of inorganic ions on the photocatalytic degradation of humic acid, Russ. J. Phys. Chem. A, 86 (2012) 1318–1325.
  119. H. Song, J. Shao, Y. He, J. Hou, W. Chao, Natural organic matter removal and flux decline with charged ultrafiltration and nanofiltration membranes, J. Membr. Sci., 376 (2011) 179–187.
  120. A. Rajeswari, S. Vismaiya, A. Pius, Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water, Chem. Eng. J.,313 (2017) 928–937.
  121. C.P. Athanasekou, S. Morales-Torres, V. Likodimos, G.E. Romanos, L.M. Pastrana-Martinez, P. Falaras, D.D. Dionysiou, J.L. Faria, J.L. Figueiredo, A.M.T. Silva, Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatalytic ultrafiltration water treatment under visible light, Appl. Catal., B, 158–159 (2014) 361–372.
  122. G. Liu, K. Han, H. Ye, C. Zhu, Y. Gao, Y. Liu, Y. Zhou, Graphene oxide/triethanolamine modified titanate nanowires as photocatalytic membrane for water treatment, Chem. Eng. J., 320 (2017) 74–80.
  123. S.K. Papageorgiou, F.K. Katsaros, E.P. Favvas, G. Em. Romanos, C.P. Athanasekou, K.G. Beltsios, O.I. Tzialla, P. Falaras, Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes, Water Res., 46 (2012) 1858–1872.
  124. N.E. Salim, J. Jaafar, A.F. Ismail, M.H.D. Othman, M.A. Rahman, N. Yusof, M. Qtaishat, T. Matsuura, F. Aziz, W.N.W. Salleh, Preparation and characterization of hydrophilic surface modifier macromolecule modified poly (ether sulfone) photocatalytic membrane for phenol removal, Chem. Eng. J., 335 (2018) 236–247.
  125. S. Chakraborty, S. Loutatidou, G. Palmisano, J. Kujawa, M.O. Mavukkandy, S. Al-Gharabli, E. Curcio, H.A. Arafat, Photocatalytic hollow fiber membranes for the degradation of pharmaceutical compounds in wastewater, J. Environ. Chem. Eng., 5 (2017) 5014–5024.
  126. K.V. Plakas, V.C. Sarasidis, S.I. Patsios, D.A. Lambropoulou, A.J. Karabelas, Novel pilot scale continuous photocatalytic membrane reactor for removal of organic micropollutants from water, Chem. Eng. J., 304 (2016) 335–343.
  127. K. Szymański, A.W. Morawski, S. Mozia, Humic acids removal in a photocatalytic membrane reactor with a ceramic UF membrane, Chem. Eng. J., 305 (2016) 19–27.
  128. A. Oun, N. Tahri, S. Mahouche-Chergui, B. Carbonnier, S. Majumdar, S. Sarkar, G.C. Sahoo, R. Ben Amar, Tubular ultrafiltration ceramic membrane based on titania nanoparticles immobilized on macroporous clay-alumina support: elaboration, characterization and application to dye removal, Sep. Purif. Technol., 188 (2017) 126–133.
  129. N.G. Moustakas, F.K. Katsaros, A.G. Kontos, G.E. Romanos, D.D. Dionysiou, P. Falaras, Visible light active TiO2 photocatalytic filtration membranes with improved permeability and low energy consumption, Catal. Today, 224 (2014) 56–69.
  130. X.Q. Li, W.X. Zhang, Sequestration of metal cations with zerovalent iron nanoparticles-a study with high resolution X-ray photoelectron spectroscopy (HR-XPS), J. Phys. Chem. C, 111 (2007) 6939–6946.