References

  1. J.S. Vrouwenvelder, J.W.N.M. Kappelhof, S.G.J. Heijman, J.C. Schippers, D. van der Kooij, Tools for fouling diagnosis of NF and RO membranes and assessment of the fouling potential of feed water, Desalination, 157 (2003) 361–365.
  2. J.S. Vrouwenvelder, D.A. Graf von der Schulenburg, J.C. Kruithof, M.L. Johns, M.C.M. van Loosdrecht, Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem, Water Res., 43 (2009) 583–594.
  3. D. Jermann, W. Pronk, R. Kagi, M. Halbeisen, M. Boller, Influence of interactions between NOM and particles on UF fouling mechanisms, Water Res., 42 (2008) 3870–3878.
  4. T. Lin, Z. Lu, W. Chen, Interaction mechanisms and predictions on membrane fouling in an ultrafiltration system, using the XDLVO approach, J. Membr. Sci., 461 (2014) 49–58.
  5. L. Song, Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling, J. Membr. Sci., 139 (1998) 183–200.
  6. N. Lee, G. Amy, J.-P. Croué, H. Buisson, Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM), Water Res., 38 (2004) 4511–4523.
  7. T. Tran, B. Bolto, S. Gray, M. Hoang, E. Ostarcevic, An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant, Water Res., 41 (2007) 3915–3923.
  8. M. Gimmelshtein, R. Semiat, Investigation of flow next to membrane walls, J. Membr. Sci., 264 (2005) 137–150.
  9. P.A. Araújo, D.J. Miller, P.B. Correia, M.C.M. Van Loosdrecht, J.C. Kruithof, B.D. Freeman, D.R. Paul, J.S. Vrouwenvelder, Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control, Desalination, 295 (2012) 1–10.
  10. G.-d. Kang, Y.-m. Cao, Development of antifouling reverse osmosis membranes for water treatment: a review, Water Res., 46 (2012) 584–600.
  11. Y. Baek, J. Yu, S.-H. Kim, S. Lee, J. Yoon, Effect of surface properties of reverse osmosis membranes on biofouling occurrence under filtration conditions, J. Membr. Sci., 382 (2011) 91–99.
  12. J. Balster, D.F. Stamatialis, M. Wessling, Membrane with integrated spacer, J. Membr. Sci., 360 (2010) 185–189.
  13. J. Schwinge, D.E. Wiley, A.G. Fane, Novel spacer design improves observed flux, J. Membr. Sci., 229 (2004) 53–61.
  14. J. Schwinge, D.E. Wiley, A.G. Fane, R. Guenther, Characterization of a zigzag spacer for ultrafiltration, J. Membr. Sci., 172 (2000) 19–31.
  15. W. Li, K.K. Chen, Y.-N. Wang, W.B. Krantz, A.G. Fane, C.Y. Tang, A conceptual design of spacers with hairy structures for membrane processes, J. Membr. Sci., 510 (2016) 314–325.
  16. F. Li, W. Meindersma, A.B. de Haan, T. Reith, Novel spacers for mass transfer enhancement in membrane separations, J. Membr. Sci., 253 (2005) 1–12.
  17. F. Li, G.W. Meindersma, A.B. de Haan, T. Reith, Optimization of non-woven spacers by CFD and validation by experiments, Desalination, 146 (2002) 209–212.
  18. G. Schock, A. Miquel, Mass transfer and pressure loss in spiral wound modules, Desalination, 64 (1987) 339–352.
  19. J. Fárková, The pressure drop in membrane module with spacers, J. Membr. Sci., 64 (1991) 103–111.
  20. A. Subramani, S. Kim, E.M.V. Hoek, Pressure, flow, and concentration profiles in open and spacer-filled membrane channels, J. Membr. Sci., 277 (2006) 7–17.
  21. P. Xie, L.C. Murdoch, D.A. Ladner, Hydrodynamics of sinusoidal spacers for improved reverse osmosis performance, J. Membr. Sci., 453 (2014) 92–99.
  22. R. Ikan, Aquatic humic substances—influence on fate and treatment of pollutants, Org. Geochem., 15 (1990) 219.
  23. Z. Domany, I. Galambos, G. Vatai, E. Bekassy-molnar, Humic substances removal from drinking water by membrane filtration, Desalination, 145 (2002) 333–337.
  24. M.F.A. Goosen, S.S. Sablani, H. Al‐Hinai, S. Al‐Obeidani, R. Al‐Belushi, D. Jackson, Fouling of reverse osmosis and ultrafiltration membranes: a critical review, Sep. Sci. Technol., 39 (2005) 2261–2297.
  25. M.R. Esfahani, H.A. Stretz, M.J.M. Wells, Comparing humic acid and protein fouling on polysulfone ultrafiltration membranes: adsorption and reversibility, J. Water Process Eng., 6 (2015) 83–92.
  26. A.I. Schäfer, M. Mastrup, R.L. Jensen, Particle interactions and removal of trace contaminants from water and wastewaters, Desalination, 147 (2002) 243–250.
  27. E. Salehi, S.S. Madaeni, Adsorption of humic acid onto ultrafiltration membranes in the presence of protein and metal ions, Desalination, 263 (2010) 139–145.
  28. K.L. Jones, C.R. O’Melia, Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength, J. Membr. Sci., 165 (2000) 31–46.
  29. J. Schwinge, P.R. Neal, D.E. Wiley, D.F. Fletcher, A.G. Fane, Spiral wound modules and spacers: review and analysis, J. Membr. Sci., 242 (2004) 129–153.
  30. S. Ma, L. Song, Numerical study on permeate flux enhancement by spacers in a crossflow reverse osmosis channel, J. Membr. Sci., 284 (2006) 102–109.
  31. L. Song, S. Ma, Numerical studies of the impact of spacer geometry on concentration polarization in spiral wound membrane modules, Ind. Eng. Chem. Res., 44 (2005) 7638–7645.
  32. M. Shakaib, S.M.F. Hasani, M. Mahmood, CFD modeling for flow and mass transfer in spacer-obstructed membrane feed channels, J. Membr. Sci., 326 (2009) 270–284.
  33. G.A. Fimbres-Weihs, D.E. Wiley, Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow, J. Membr. Sci., 306 (2007) 228–243.
  34. A.L. Ahmad, K.K. Lau, Impact of different spacer filaments geometries on 2D unsteady hydrodynamics and concentration polarization in spiral wound membrane channel, J. Membr. Sci., 286 (2006) 77–92.
  35. S. Ma, L. Song, S.L. Ong, W.J. Ng, A 2-D streamline upwind Petrov/Galerkin finite element model for concentration polarization in spiral wound reverse osmosis modules, J. Membr. Sci., 244 (2004) 129–139.
  36. S. Karode, A. Kumar, Flow visualization through spacer filled channels by computational fluid dynamics I.: pressure drop and shear rate calculations for flat sheet geometry, J. Membr. Sci., 193 (2001) 69–84.
  37. R. Iwatsu, K. Ishii, T. Kawamura, K. Kuwahara, J.M. Hyun, Numerical simulation of three-dimensional flow structure in a driven cavity, Fluid Dyn. Res., 5 (1989) 173–189.
  38. W.S. Kim, J.K. Park, H.N. Chang, Mass transfer in a threedimensional net-type turbulence promoter, Int. J. Heat Mass Transfer, 30 (1987) 1183–1192.
  39. S.M.G. Demneh, B. Nasernejad, H. Modarres, Modeling investigation of membrane biofouling phenomena by considering the adsorption of protein, polysaccharide and humic acid., Colloids Surf., B, 88 (2011) 108–114.
  40. P. Kanagaraj, A. Nagendran, D. Rana, T. Matsuura, Separation of macromolecular proteins and removal of humic acid by cellulose acetate modified UF membranes, Int. J. Biol. Macromol., 89 (2016) 81–88.
  41. K. Li, T. Huang, F. Qu, X. Du, A. Ding, G. Li, H. Liang, Performance of adsorption pretreatment in mitigating humic acid fouling of ultrafiltration membrane under environmentally relevant ionic conditions, Desalination, 377 (2016) 91–98.
  42. A. Matin, Z. Khan, S.M.J. Zaidi, M.C. Boyce, Biofouling in reverse osmosis membranes for seawater desalination: phenomena and prevention, Desalination, 281 (2011) 1–16.
  43. M.M. Clark, Transport Modeling for Environmental Engineers and Scientists, Second Edition, John Wiley & Sons, Hoboken, 2009.