References
- J.S. Vrouwenvelder, J.W.N.M. Kappelhof, S.G.J. Heijman,
J.C. Schippers, D. van der Kooij, Tools for fouling diagnosis of
NF and RO membranes and assessment of the fouling potential
of feed water, Desalination, 157 (2003) 361–365.
- J.S. Vrouwenvelder, D.A. Graf von der Schulenburg, J.C. Kruithof,
M.L. Johns, M.C.M. van Loosdrecht, Biofouling of spiral-wound
nanofiltration and reverse osmosis membranes: a feed spacer
problem, Water Res., 43 (2009) 583–594.
- D. Jermann, W. Pronk, R. Kagi, M. Halbeisen, M. Boller,
Influence of interactions between NOM and particles on UF
fouling mechanisms, Water Res., 42 (2008) 3870–3878.
- T. Lin, Z. Lu, W. Chen, Interaction mechanisms and predictions
on membrane fouling in an ultrafiltration system, using the
XDLVO approach, J. Membr. Sci., 461 (2014) 49–58.
- L. Song, Flux decline in crossflow microfiltration and
ultrafiltration: mechanisms and modeling of membrane fouling,
J. Membr. Sci., 139 (1998) 183–200.
- N. Lee, G. Amy, J.-P. Croué, H. Buisson, Identification and
understanding of fouling in low-pressure membrane (MF/UF)
filtration by natural organic matter (NOM), Water Res., 38 (2004)
4511–4523.
- T. Tran, B. Bolto, S. Gray, M. Hoang, E. Ostarcevic, An autopsy
study of a fouled reverse osmosis membrane element used in a
brackish water treatment plant, Water Res., 41 (2007) 3915–3923.
- M. Gimmelshtein, R. Semiat, Investigation of flow next to
membrane walls, J. Membr. Sci., 264 (2005) 137–150.
- P.A. Araújo, D.J. Miller, P.B. Correia, M.C.M. Van Loosdrecht,
J.C. Kruithof, B.D. Freeman, D.R. Paul, J.S. Vrouwenvelder,
Impact of feed spacer and membrane modification by hydrophilic,
bactericidal and biocidal coating on biofouling control,
Desalination, 295 (2012) 1–10.
- G.-d. Kang, Y.-m. Cao, Development of antifouling reverse
osmosis membranes for water treatment: a review, Water Res.,
46 (2012) 584–600.
- Y. Baek, J. Yu, S.-H. Kim, S. Lee, J. Yoon, Effect of surface
properties of reverse osmosis membranes on biofouling
occurrence under filtration conditions, J. Membr. Sci., 382 (2011)
91–99.
- J. Balster, D.F. Stamatialis, M. Wessling, Membrane with
integrated spacer, J. Membr. Sci., 360 (2010) 185–189.
- J. Schwinge, D.E. Wiley, A.G. Fane, Novel spacer design
improves observed flux, J. Membr. Sci., 229 (2004) 53–61.
- J. Schwinge, D.E. Wiley, A.G. Fane, R. Guenther, Characterization
of a zigzag spacer for ultrafiltration, J. Membr. Sci., 172 (2000)
19–31.
- W. Li, K.K. Chen, Y.-N. Wang, W.B. Krantz, A.G. Fane,
C.Y. Tang, A conceptual design of spacers with hairy structures
for membrane processes, J. Membr. Sci., 510 (2016) 314–325.
- F. Li, W. Meindersma, A.B. de Haan, T. Reith, Novel spacers for
mass transfer enhancement in membrane separations, J. Membr.
Sci., 253 (2005) 1–12.
- F. Li, G.W. Meindersma, A.B. de Haan, T. Reith, Optimization
of non-woven spacers by CFD and validation by experiments,
Desalination, 146 (2002) 209–212.
- G. Schock, A. Miquel, Mass transfer and pressure loss in spiral
wound modules, Desalination, 64 (1987) 339–352.
- J. Fárková, The pressure drop in membrane module with
spacers, J. Membr. Sci., 64 (1991) 103–111.
- A. Subramani, S. Kim, E.M.V. Hoek, Pressure, flow, and concentration
profiles in open and spacer-filled membrane channels,
J. Membr. Sci., 277 (2006) 7–17.
- P. Xie, L.C. Murdoch, D.A. Ladner, Hydrodynamics of sinusoidal
spacers for improved reverse osmosis performance,
J. Membr. Sci., 453 (2014) 92–99.
- R. Ikan, Aquatic humic substances—influence on fate and
treatment of pollutants, Org. Geochem., 15 (1990) 219.
- Z. Domany, I. Galambos, G. Vatai, E. Bekassy-molnar, Humic
substances removal from drinking water by membrane filtration,
Desalination, 145 (2002) 333–337.
- M.F.A. Goosen, S.S. Sablani, H. Al‐Hinai, S. Al‐Obeidani,
R. Al‐Belushi, D. Jackson, Fouling of reverse osmosis and
ultrafiltration membranes: a critical review, Sep. Sci. Technol.,
39 (2005) 2261–2297.
- M.R. Esfahani, H.A. Stretz, M.J.M. Wells, Comparing humic acid
and protein fouling on polysulfone ultrafiltration membranes:
adsorption and reversibility, J. Water Process Eng., 6 (2015)
83–92.
- A.I. Schäfer, M. Mastrup, R.L. Jensen, Particle interactions and
removal of trace contaminants from water and wastewaters,
Desalination, 147 (2002) 243–250.
- E. Salehi, S.S. Madaeni, Adsorption of humic acid onto
ultrafiltration membranes in the presence of protein and metal
ions, Desalination, 263 (2010) 139–145.
- K.L. Jones, C.R. O’Melia, Protein and humic acid adsorption
onto hydrophilic membrane surfaces: effects of pH and ionic
strength, J. Membr. Sci., 165 (2000) 31–46.
- J. Schwinge, P.R. Neal, D.E. Wiley, D.F. Fletcher, A.G. Fane,
Spiral wound modules and spacers: review and analysis,
J. Membr. Sci., 242 (2004) 129–153.
- S. Ma, L. Song, Numerical study on permeate flux enhancement
by spacers in a crossflow reverse osmosis channel, J. Membr.
Sci., 284 (2006) 102–109.
- L. Song, S. Ma, Numerical studies of the impact of spacer
geometry on concentration polarization in spiral wound
membrane modules, Ind. Eng. Chem. Res., 44 (2005) 7638–7645.
- M. Shakaib, S.M.F. Hasani, M. Mahmood, CFD modeling for
flow and mass transfer in spacer-obstructed membrane feed
channels, J. Membr. Sci., 326 (2009) 270–284.
- G.A. Fimbres-Weihs, D.E. Wiley, Numerical study of mass
transfer in three-dimensional spacer-filled narrow channels
with steady flow, J. Membr. Sci., 306 (2007) 228–243.
- A.L. Ahmad, K.K. Lau, Impact of different spacer filaments
geometries on 2D unsteady hydrodynamics and concentration
polarization in spiral wound membrane channel, J. Membr. Sci.,
286 (2006) 77–92.
- S. Ma, L. Song, S.L. Ong, W.J. Ng, A 2-D streamline upwind
Petrov/Galerkin finite element model for concentration
polarization in spiral wound reverse osmosis modules, J. Membr.
Sci., 244 (2004) 129–139.
- S. Karode, A. Kumar, Flow visualization through spacer filled
channels by computational fluid dynamics I.: pressure drop
and shear rate calculations for flat sheet geometry, J. Membr.
Sci., 193 (2001) 69–84.
- R. Iwatsu, K. Ishii, T. Kawamura, K. Kuwahara, J.M. Hyun,
Numerical simulation of three-dimensional flow structure in a
driven cavity, Fluid Dyn. Res., 5 (1989) 173–189.
- W.S. Kim, J.K. Park, H.N. Chang, Mass transfer in a threedimensional
net-type turbulence promoter, Int. J. Heat Mass
Transfer, 30 (1987) 1183–1192.
- S.M.G. Demneh, B. Nasernejad, H. Modarres, Modeling
investigation of membrane biofouling phenomena by considering
the adsorption of protein, polysaccharide and humic
acid., Colloids Surf., B, 88 (2011) 108–114.
- P. Kanagaraj, A. Nagendran, D. Rana, T. Matsuura, Separation of
macromolecular proteins and removal of humic acid by cellulose
acetate modified UF membranes, Int. J. Biol. Macromol.,
89 (2016) 81–88.
- K. Li, T. Huang, F. Qu, X. Du, A. Ding, G. Li, H. Liang,
Performance of adsorption pretreatment in mitigating humic
acid fouling of ultrafiltration membrane under environmentally
relevant ionic conditions, Desalination, 377 (2016) 91–98.
- A. Matin, Z. Khan, S.M.J. Zaidi, M.C. Boyce, Biofouling
in reverse osmosis membranes for seawater desalination:
phenomena and prevention, Desalination, 281 (2011) 1–16.
- M.M. Clark, Transport Modeling for Environmental Engineers
and Scientists, Second Edition, John Wiley & Sons, Hoboken,
2009.