References
- H. Hu, Q. Jin, P.S. Kavan, A study of heavy metal pollution
in china: current status, pollution-control policies and countermeasures,
Sustainability, 6 (2014) 5820–5838.
- F. Xu, Z. Liu, Y. Cao, L. Qiu, J. Feng, X. Feng, T. Xu, Assessment
of heavy metal contamination in urban river sediments in the
Jiaozhou Bay catchment, Qingdao, China, CATENA, 150 (2017)
9–16.
- G. Zhang, X. Ouyang, H. Li, Z. Fu, J. Chen, Bioremoval
of antimony from contaminated waters by a mixed batch
culture of sulfate-reducing bacteria, Int. Biodeterior. Biodegrad.,
115 (2016) 148–155.
- S. Dev, S. Roy, J. Bhattacharya, Optimization of the operation of
packed bed bioreactor to improve the sulfate and metal removal
from acid mine drainage, J. Environ. Manage., 200 (2017)
135–144.
- J. Guo, Y. Kang, Y. Feng, Bioassessment of heavy metal toxicity
and enhancement of heavy metal removal by sulfate-reducing
bacteria in the presence of zero valent iron, J. Environ. Manage.,
203 (2017) 278–285.
- H.G. Zhang, M. Li, Z. Yang, Y. Sun, J. Yan, D.Y. Chen,
Y.H. Chen, Isolation of a non-traditional sulfate reducingbacteria
Citrobacter freundii sp. and bioremoval of thallium and
sulfate, Ecol. Eng., 102 (2017) 397–403.
- A.H. Kaksonen, J.J. Plumb, W.J. Robertson, P.D. Franzmann,
J.A.E. Gibson, J.A. Puhakka, Culturable diversity and
community fatty acid profiling of sulfate-reducing fluidizedbed
reactors treating acidic, metal-containing wastewater,
Geomicrobiology, 21 (2007) 469–480.
- A. Pruden, N. Messner, L. Pereyra, R.E. Hanson, S.R. Hiibel,
K.F. Reardon, The effect of inoculum on the performance of
sulfate-reducing columns treating heavy metal contaminated
water, Water Res., 41 (2007) 904–914.
- S. Azabou, T. Mechichi, B.K.C. Patel, S. Sayadi, Isolation and
characterization of a mesophilic heavy-metals-tolerant sulfatereducing
bacterium Desulfomicrobium sp. from an enrichment
culture using phosphogypsum as a sulfate source, J. Hazard.
Mater., 140 (2007) 264–270.
- F. Alexandrino, R. Macías, N.C. Costa, N.C.M. Gomes,
A.D.M. Canário, M.C. Costa, A bacterial consortium isolated
from an Icelandic fumarole displays exceptionally high levels
of sulfate reduction and metals resistance, J. Hazard. Mater.,
187 (2011) 362–370.
- S.A. Dar, R. Kleerebezem, A.J.M. Stams, J.G. Kuenen,
G. Muyzer, Competition and coexistence of sulfate-reducing
bacteria, acetogens and methanogens in a lab-scale anaerobic
bioreactor as affected by changing substrate to sulfate ratio,
Appl. Microbiol. Biotechnol., 78 (2008) 1045–1055.
- G. Muyzer, A.J. Stams, The ecology and biotechnology of
sulphate-reducing bacteria, Nat. Rev. Microbiol., 6 (2008)
441–454.
- A.W. Strittmatter, H. Liesegang, R. Rabus, I. Decker, J. Amann,
S. Andres, A. Henne, W.F. Fricke, R. Martinez-Arias, D. Bartels,
A. Goesmann, L. Krause, A. Pühler, H.P. Klenk, M. Richter,
M. Schüler, F.O. Glöckner, A. Meyerdierks, G. Gottschalk,
R. Amann, Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon
completely to carbon dioxide, Environ. Microbiol., 11 (2009)
1038–1055.
- M. Pester, N. Bittner, P. Deevong, M. Wagner, A. Loy, A ‘rare
biosphere’ microorganism contributes to sulfate reduction in
a peatland, ISME J., 4 (2010) 1591–1602.
- J. Guan, L.-P. Xia, L.-Y. Wang, J.-F. Liu, J.-D. Gu, B.-Z. Mu,
Diversity and distribution of sulfate-reducing bacteria in four
petroleum reservoirs detected by using 16s rRNA and dsrAB
genes, Int. Biodeterior. Biodegrad., 76 (2013) 58–66.
- C. Jeanthon, S. L’Haridon, V. Cueff, A. Banta, A.L. Reysenbach,
D. Prieur, Thermodesulfobacterium hydrogeniphilum sp. nov.,
a thermophilic, chemolithoautotrophic, sulfate-reducing
bacterium isolated from a deep-sea hydrothermal vent
at guaymas basin, and emendation of the genus Thermodesulfobacterium,
Int. J. Syst. Evol. Microbiol., 52 (2002) 765–772.
- T. Itoh, K. Suzuki, T. Nakase, Thermocladium modestius gen. nov.,
sp. nov., a new genus of rod-shaped, extremely thermophilic
crenarchaeote., Int. J. Syst. Bacteriol., 48 Pt 3 (1998) 879–887.
- T. Itoh, K. Suzuki, P.C. Sanchez, T. Nakase, Caldivirga maquilingensis
gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote
isolated from a hot spring in the Philippines, Int. J. Syst.
Bacteriol., 49 Pt 3 (1999) 1157–1163.
- R.L. Qiu, B.L. Zhao, J.L. Liu, X.F. Huang, Q.F. Li, E. Brewer,
S.Z. Wang, N. Shi, Sulfate reduction and copper precipitation
by a Citrobacter sp. isolated from a mining area, J. Hazard.
Mater., 164 (2009) 1310–1315.
- Z. Han, Y. Zhao, H. Yan, H. Zhao, M. Han, B. Sun, X. Sun,
F. Hou, H. Sun, L. Han, Y. Sun, J. Wang, H. Li, Y. Wang, H. Du,
Struvite precipitation induced by a novel sulfate-reducing
bacterium Acinetobacter calcoaceticus SRB4 isolated from river
sediment, Geomicrobiology, 32 (2015) 868–877.
- R.Q. Yu, J.R. Flanders, E.E. Mack, R. Turner, M.B. Mirza,
T. Barkay, Contribution of coexisting sulfate and iron reducing
bacteria to methylmercury production in freshwater river
sediments, Environ. Sci. Technol., 46 (2012) 2684–2691.
- J. Yan, W. Ye, Z. Jian, J. Xie, K. Zhong, S. Wang, H. Hu, Z. Chen,
H. Wen, H. Zhang, Enhanced sulfate and metal removal by
reduced graphene oxide self-assembled Enterococcus avium sulfate-reducing bacteria particles, Bioresour. Technol., 266 (2018)
447–453.
- J.-D. Gu, More than simply microbial growth curves, Appl.
Environ. Biotechnol., 1 (2016) 63–65.
- J. Yan, K. Zhong, S.J. Wang, Z.X. Chen, H.S. Hu, Z. Jian,
H. Wen, H. Zhang, Carbon metabolism and sulfate respiration
by a non-conventional Citrobacter freundii strain sr10 with
potential application in removal of metals and metalloids, Int.
Biodeterior. Biodegrad., 133 (2018) 238–246.
- D.S. Multani, R.B. Meeley, A.H. Paterson, J. Gray, S.P. Briggs,
G.S. Johal, Plant-pathogen microevolution: molecular basis
for the origin of a fungal disease in maize, P.N.A.S., 95 (1998)
1686–1691.
- J. Yan, H.J.M. Op den Camp, M.S.M. Jetten, Y.Y. Hu,
S.C.M. Haaijer, Induced cooperation between marine
nitrifiers
and anaerobic ammonium-oxidizing bacteria by
incremental exposure to oxygen., Syst. Appl. Microbiol.,
33 (2010) 407–415.
- APHA, Standard Methods for the Examination of Water and
Wastewater, 21st ed., American Public Health Association,
American Water Works Association, Water Environment Federation,
Washington, D.C., 2005.
- M.M. Mcguire, R.J. Hamers, Extraction and quantitative
analysis of elemental sulfur from sulfide mineral surfaces
by high-performance liquid chromatography, Environ. Sci.
Technol., 34 (2000) 4651–4655.
- W. Watsuntorn, C. Ruangchainikom, E.R. Rene, P.N.L. Lens,
W. Chulalaksananukul, Hydrogen sulfide oxidation under
anoxic conditions by a nitrate-reducing, sulfide-oxidizing
bacterium
isolated from the Mae Um Long Luang hot spring,
Thailand, Int. Biodeterior. Biodegrad., 124 (2017) 196–205.
- R. Zhao, D. Mieritz, D.-K. Seo, C.K. Chan, New hydrogen
titanium phosphate sulfate electrodes for Li-ion and Na-ion
batteries, J. Power Sources., 343 (2017) 197–206.
- S. Okabe, W.G. Characklis, Effects of temperature and
phosphorous concentration on microbial sulfate reduction
by Desulfovibrio desulfuricans, Biotechnol. Bioeng., 39 (1992)
1031–1042.
- D.J. Birri, D.A. Brede, T. Forberg, H. Holo, I.F. Nes, Molecular
and genetic characterization of a novel bacteriocin locus
in Enterococcus avium isolates from infants, Appl. Environ.
Microbiol., 76 (2010) 483–492.
- Y. Takahashi, K. Suto, C. Inoue, Polysulfide reduction by
clostridium relatives isolated from sulfate-reducing enrichment
cultures, J. Biosci. Bioeng., 109 (2010) 372–380.
- C. Tardy-Jacquenod, M. Magot, F. Laigret, M. Kaghad, B.K.C.
Patel, J. Guezennec, R. Matheron, P. Caumette, Desulfovibrio
gabonensis sp. nov., a new moderately halophilic sulfatereducing
bacterium isolated from an oil pipeline, Int. J. Syst.
Bacteriol., 46 (1996) 710–715.
- M.W. Friedrich, Phylogenetic analysis reveals multiple lateral
transfers of adenosine-5'-phosphosulfate reductase genes
among sulfate-reducing microorganisms, J. Bacteriol., 184 (2002)
278–289.
- S. Sukontasing, S. Tanasupawat, S. Moonmangmee, J.S. Lee,
K. Suzuki, Enterococcus camelliae sp. nov., isolated from fermented
tea leaves in Thailand, Int. J. Syst. Evol. Microbiol.,
57 (2007) 2151–2154.
- S. Takii, S. Hanada, Y. Hase, H. Tamaki, Y. Uyeno, Y. Sekiguchi,
K. Matsuura, Desulfovibrio marinisediminis sp. nov., a novel
sulfate-reducing bacterium isolated from coastal marine
sediment via enrichment with casamino acids, Int. J. Syst. Evol.
Microbiol., 58 (2008) 2433–2438.
- L.N. Abu, D. Selesi, C. Jobelius, R.U. Meckenstock, Anaerobic
benzene degradation by gram-positive sulfate-reducing bacteria,
FEMS Microbiol. Ecol., 68 (2009) 300–311.
- A.H. Kaksonen, S. Spring, P. Schumann, R.M. Kroppenstedt,
J.A. Puhakka, Desulfovirgula thermocuniculi gen. nov., sp. nov.,
a thermophilic sulfate-reducer isolated from a geothermal
underground mine in Japan, Int. J. Syst. Evol. Microbiol.,
57 (2007) 98–102.
- R.R. Sun, L. Zhang, Z.F. Zhang, G.H. Chen, F. Jiang, Realizing
high-rate sulfur reduction under sulfate-rich conditions in
a biological sulfide production system to treat metal-laden
wastewater deficient in organic matter, Water Res., 131 (2018)
239–245.
- E.J. Romano, K.H. Schulz, A XPS investigation of SO2,
adsorption on ceria–zirconia mixed-metal oxides, Appl. Surf.
Sci., 246 (2005) 262–270.
- D.J. Asunskis, L. Hanley, Valence band and core level X-ray
photoelectron spectroscopy of lead sulfide nanoparticle–polymer composites, Surf. Sci., 601 (2007) 4648–4656.
- M. Mullet, S. Boursiquot, M. Abdelmoula, J.-M. Génin,
J.-J. Ehrhardt, Surface chemistry and structural properties of
mackinawite prepared by reaction of sulfide ions with metallic
iron, Geochim. Cosmochim. Acta, 66 (2002) 829–836.
- K. Fichtel, F. Mathes, M. Könneke, H. Cypionka, B. Engelen,
Isolation of sulfate-reducing bacteria from sediments above
the deep-subseafloor aquifer, Front. Microbiol., 3 (2012) 65.
- O. Haouari, M.L. Fardeau, L. Casalot, J.L. Tholozan, M. Hamdi,
B. Ollivier, Isolation of sulfate-reducing bacteria from tunisian
marine sediments and description of Desulfovibrio bizertensis sp.
nov, Int. J. Syst. Evol. Microbiol., 56 (2006) 2909–2913.
- B. Sun, J.R. Cole, R.A. Sanford, J.M. Tiedje, Isolation and
characterization of Desulfovibrio dechloracetivorans sp. nov.,
a marine dechlorinating bacterium growing by coupling
the oxidation of acetate to the reductive dechlorination of
2-chlorophenol, Appl. Environ. Microbiol., 66 (2000) 2408–2013.
- A.L. Tarasov, I.A. Borzenkov, Sulfate-reducing bacteria of the
genus Desulfovibrio from south vietnam seacoast, Microbiology,
84 (2015) 553–560.
- A. Thomas, R.-P. Anthony, O. Bernard, M. Michel, Desulfotomaculum spp. and related gram-positive sulfate-reducing
bacteria in deep subsurface environments, Front. Microbiol.,
4 (2013) 362.
- A.S. Bradley, W.D. Leavitt, D.T. Johnston, Revisiting the
dissimilatory sulfate reduction pathway, Geobiology, 9 (2011)
446–457.
- L. Zhang, Z.F. Zhang, R.R. Sun, S. Liang, G.H. Chen, F. Jiang,
Self-accelerating sulfur reduction via polysulfide to realize a
high-rate sulfidogenic reactor for wastewater treatment, Water
Res., 130 (2018) 161–167.
- F. Liu, J. Zhang, C. Sun, Z. Yu, B. Hou, The corrosion of two
aluminium sacrificial anode alloys in SRB-containing sea mud,
Corros. Sci., 83 (2014) 375–381.
- H. Sass, H. Cypionka, Isolation of sulfate-reducing bacteria
from the terrestrial deep subsurface and description of Desulfovibrio
cavernae sp. nov., Syst. Appl. Microbiol., 27 (2004)
541–548.
- M.G. Kiran, K. Pakshirajan, G. Das, Heavy metal removal from
aqueous solution using sodium alginate immobilized sulfate
reducing bacteria: mechanism and process optimization,
J. Environ. Manage., 218 (2018) 486–496.
- M. Zhang, H. Wang, X. Han, Preparation of metal-resistant
immobilized sulfate reducing bacteria beads for acid mine
drainage treatment, Chemosphere, 154 (2016) 215–223.
- M.G. Kiran, K. Pakshirajan, G. Das, Heavy metal removal
from multicomponent system by sulfate reducing bacteria:
mechanism and cell surface characterization, J. Hazard. Mater.,
324 (2017) 62–70.
- O. Mtioui-Sghaier, R. Mendoza-Meroño, E. Fernández-Zapico,
S. García-Granda, A. Fernández-González, L. Ktari, M. Dammak,
Synthesis of a new Cd(II)–Ni(II) hetero-metallic coordination
polymer base on citric acid ligand. X-ray structure, thermal
stability, XPS and fluorescence studies, J. Mol. Struct., 1105
(2016) 105–111.
- V. Krylova, M. Andrulevičius, Optical, XPS and XRD studies
of semiconducting copper sulfide layers on a polyamide film,
Int. J. Photoenergy, 3 (2009) 53–58.
- Y.Y. Andreev, E.A. Skryleva, I.A. Safonov, Chemical and phase
composition of nanosized oxide and passive films on Ni-Cr
alloys. II. XPS analysis of films produced by anodic passivation
of alloys in 1N H2SO4, Prot. Met. Phys. Chem, 45 (2009) 181–186.
- J.M. Macy, J.M. Santini, B.V. Pauling, A.H. O’Neill, L.I. Sly,
Two new arsenate/sulfate-reducing bacteria: mechanisms of
arsenate reduction, Arch. Microbiol., 173 (2000) 49–57.
- M.G. Kiran, K. Pakshirajan, G. Das, Heavy metal removal using
sulfate-reducing biomass obtained from a lab-scale upflow
anaerobic-packed bed reactor, J. Environ. Eng., 142 (2016)
C4015010.
- G. Cabrera, R. Pérez, J.M. Gómez, A. Abalos, D. Cantero, Toxic
effects of dissolved heavy metals on Desulfovibrio vulgaris and
Desulfovibrio sp. strains, J. Hazard. Mater., 135 (2006) 40–46.
- D. Barreca, A. Gasparotto, C. Maragno, E. Tondello, Nanostructured
cadmium sulfide thin films by XPS, Surf. Sci. Spectra,
9 (2002) 46–53.
- L. Zhang, B. Tian, F. Chen, J. Zhang, Nickel sulfide as co-catalyst
on nanostructured TiO2 for photocatalytic hydrogen evolution,
Int. J. Hydrogen Energy, 37 (2012) 17060–17067.