References

  1. H. Hu, Q. Jin, P.S. Kavan, A study of heavy metal pollution in china: current status, pollution-control policies and countermeasures, Sustainability, 6 (2014) 5820–5838.
  2. F. Xu, Z. Liu, Y. Cao, L. Qiu, J. Feng, X. Feng, T. Xu, Assessment of heavy metal contamination in urban river sediments in the Jiaozhou Bay catchment, Qingdao, China, CATENA, 150 (2017) 9–16.
  3. G. Zhang, X. Ouyang, H. Li, Z. Fu, J. Chen, Bioremoval of antimony from contaminated waters by a mixed batch culture of sulfate-reducing bacteria, Int. Biodeterior. Biodegrad., 115 (2016) 148–155.
  4. S. Dev, S. Roy, J. Bhattacharya, Optimization of the operation of packed bed bioreactor to improve the sulfate and metal removal from acid mine drainage, J. Environ. Manage., 200 (2017) 135–144.
  5. J. Guo, Y. Kang, Y. Feng, Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron, J. Environ. Manage., 203 (2017) 278–285.
  6. H.G. Zhang, M. Li, Z. Yang, Y. Sun, J. Yan, D.Y. Chen, Y.H. Chen, Isolation of a non-traditional sulfate reducingbacteria Citrobacter freundii sp. and bioremoval of thallium and sulfate, Ecol. Eng., 102 (2017) 397–403.
  7. A.H. Kaksonen, J.J. Plumb, W.J. Robertson, P.D. Franzmann, J.A.E. Gibson, J.A. Puhakka, Culturable diversity and community fatty acid profiling of sulfate-reducing fluidizedbed reactors treating acidic, metal-containing wastewater, Geomicrobiology, 21 (2007) 469–480.
  8. A. Pruden, N. Messner, L. Pereyra, R.E. Hanson, S.R. Hiibel, K.F. Reardon, The effect of inoculum on the performance of sulfate-reducing columns treating heavy metal contaminated water, Water Res., 41 (2007) 904–914.
  9. S. Azabou, T. Mechichi, B.K.C. Patel, S. Sayadi, Isolation and characterization of a mesophilic heavy-metals-tolerant sulfatereducing bacterium Desulfomicrobium sp. from an enrichment culture using phosphogypsum as a sulfate source, J. Hazard. Mater., 140 (2007) 264–270.
  10. F. Alexandrino, R. Macías, N.C. Costa, N.C.M. Gomes, A.D.M. Canário, M.C. Costa, A bacterial consortium isolated from an Icelandic fumarole displays exceptionally high levels of sulfate reduction and metals resistance, J. Hazard. Mater., 187 (2011) 362–370.
  11. S.A. Dar, R. Kleerebezem, A.J.M. Stams, J.G. Kuenen, G. Muyzer, Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio, Appl. Microbiol. Biotechnol., 78 (2008) 1045–1055.
  12. G. Muyzer, A.J. Stams, The ecology and biotechnology of sulphate-reducing bacteria, Nat. Rev. Microbiol., 6 (2008) 441–454.
  13. A.W. Strittmatter, H. Liesegang, R. Rabus, I. Decker, J. Amann, S. Andres, A. Henne, W.F. Fricke, R. Martinez-Arias, D. Bartels, A. Goesmann, L. Krause, A. Pühler, H.P. Klenk, M. Richter, M. Schüler, F.O. Glöckner, A. Meyerdierks, G. Gottschalk, R. Amann, Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide, Environ. Microbiol., 11 (2009) 1038–1055.
  14. M. Pester, N. Bittner, P. Deevong, M. Wagner, A. Loy, A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland, ISME J., 4 (2010) 1591–1602.
  15. J. Guan, L.-P. Xia, L.-Y. Wang, J.-F. Liu, J.-D. Gu, B.-Z. Mu, Diversity and distribution of sulfate-reducing bacteria in four petroleum reservoirs detected by using 16s rRNA and dsrAB genes, Int. Biodeterior. Biodegrad., 76 (2013) 58–66.
  16. C. Jeanthon, S. L’Haridon, V. Cueff, A. Banta, A.L. Reysenbach, D. Prieur, Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at guaymas basin, and emendation of the genus Thermodesulfobacterium, Int. J. Syst. Evol. Microbiol., 52 (2002) 765–772.
  17. T. Itoh, K. Suzuki, T. Nakase, Thermocladium modestius gen. nov., sp. nov., a new genus of rod-shaped, extremely thermophilic crenarchaeote., Int. J. Syst. Bacteriol., 48 Pt 3 (1998) 879–887.
  18. T. Itoh, K. Suzuki, P.C. Sanchez, T. Nakase, Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines, Int. J. Syst. Bacteriol., 49 Pt 3 (1999) 1157–1163.
  19. R.L. Qiu, B.L. Zhao, J.L. Liu, X.F. Huang, Q.F. Li, E. Brewer, S.Z. Wang, N. Shi, Sulfate reduction and copper precipitation by a Citrobacter sp. isolated from a mining area, J. Hazard. Mater., 164 (2009) 1310–1315.
  20. Z. Han, Y. Zhao, H. Yan, H. Zhao, M. Han, B. Sun, X. Sun, F. Hou, H. Sun, L. Han, Y. Sun, J. Wang, H. Li, Y. Wang, H. Du, Struvite precipitation induced by a novel sulfate-reducing bacterium Acinetobacter calcoaceticus SRB4 isolated from river sediment, Geomicrobiology, 32 (2015) 868–877.
  21. R.Q. Yu, J.R. Flanders, E.E. Mack, R. Turner, M.B. Mirza, T. Barkay, Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments, Environ. Sci. Technol., 46 (2012) 2684–2691.
  22. J. Yan, W. Ye, Z. Jian, J. Xie, K. Zhong, S. Wang, H. Hu, Z. Chen, H. Wen, H. Zhang, Enhanced sulfate and metal removal by reduced graphene oxide self-assembled Enterococcus avium sulfate-reducing bacteria particles, Bioresour. Technol., 266 (2018) 447–453.
  23. J.-D. Gu, More than simply microbial growth curves, Appl. Environ. Biotechnol., 1 (2016) 63–65.
  24. J. Yan, K. Zhong, S.J. Wang, Z.X. Chen, H.S. Hu, Z. Jian, H. Wen, H. Zhang, Carbon metabolism and sulfate respiration by a non-conventional Citrobacter freundii strain sr10 with potential application in removal of metals and metalloids, Int. Biodeterior. Biodegrad., 133 (2018) 238–246.
  25. D.S. Multani, R.B. Meeley, A.H. Paterson, J. Gray, S.P. Briggs, G.S. Johal, Plant-pathogen microevolution: molecular basis for the origin of a fungal disease in maize, P.N.A.S., 95 (1998) 1686–1691.
  26. J. Yan, H.J.M. Op den Camp, M.S.M. Jetten, Y.Y. Hu, S.C.M. Haaijer, Induced cooperation between marine nitrifiers and anaerobic ammonium-oxidizing bacteria by incremental exposure to oxygen., Syst. Appl. Microbiol., 33 (2010) 407–415.
  27. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington, D.C., 2005.
  28. M.M. Mcguire, R.J. Hamers, Extraction and quantitative analysis of elemental sulfur from sulfide mineral surfaces by high-performance liquid chromatography, Environ. Sci. Technol., 34 (2000) 4651–4655.
  29. W. Watsuntorn, C. Ruangchainikom, E.R. Rene, P.N.L. Lens, W. Chulalaksananukul, Hydrogen sulfide oxidation under anoxic conditions by a nitrate-reducing, sulfide-oxidizing bacterium isolated from the Mae Um Long Luang hot spring, Thailand, Int. Biodeterior. Biodegrad., 124 (2017) 196–205.
  30. R. Zhao, D. Mieritz, D.-K. Seo, C.K. Chan, New hydrogen titanium phosphate sulfate electrodes for Li-ion and Na-ion batteries, J. Power Sources., 343 (2017) 197–206.
  31. S. Okabe, W.G. Characklis, Effects of temperature and phosphorous concentration on microbial sulfate reduction by Desulfovibrio desulfuricans, Biotechnol. Bioeng., 39 (1992) 1031–1042.
  32. D.J. Birri, D.A. Brede, T. Forberg, H. Holo, I.F. Nes, Molecular and genetic characterization of a novel bacteriocin locus in Enterococcus avium isolates from infants, Appl. Environ. Microbiol., 76 (2010) 483–492.
  33. Y. Takahashi, K. Suto, C. Inoue, Polysulfide reduction by clostridium relatives isolated from sulfate-reducing enrichment cultures, J. Biosci. Bioeng., 109 (2010) 372–380.
  34. C. Tardy-Jacquenod, M. Magot, F. Laigret, M. Kaghad, B.K.C. Patel, J. Guezennec, R. Matheron, P. Caumette, Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfatereducing bacterium isolated from an oil pipeline, Int. J. Syst. Bacteriol., 46 (1996) 710–715.
  35. M.W. Friedrich, Phylogenetic analysis reveals multiple lateral transfers of adenosine-5'-phosphosulfate reductase genes among sulfate-reducing microorganisms, J. Bacteriol., 184 (2002) 278–289.
  36. S. Sukontasing, S. Tanasupawat, S. Moonmangmee, J.S. Lee, K. Suzuki, Enterococcus camelliae sp. nov., isolated from fermented tea leaves in Thailand, Int. J. Syst. Evol. Microbiol., 57 (2007) 2151–2154.
  37. S. Takii, S. Hanada, Y. Hase, H. Tamaki, Y. Uyeno, Y. Sekiguchi, K. Matsuura, Desulfovibrio marinisediminis sp. nov., a novel sulfate-reducing bacterium isolated from coastal marine sediment via enrichment with casamino acids, Int. J. Syst. Evol. Microbiol., 58 (2008) 2433–2438.
  38. L.N. Abu, D. Selesi, C. Jobelius, R.U. Meckenstock, Anaerobic benzene degradation by gram-positive sulfate-reducing bacteria, FEMS Microbiol. Ecol., 68 (2009) 300–311.
  39. A.H. Kaksonen, S. Spring, P. Schumann, R.M. Kroppenstedt, J.A. Puhakka, Desulfovirgula thermocuniculi gen. nov., sp. nov., a thermophilic sulfate-reducer isolated from a geothermal underground mine in Japan, Int. J. Syst. Evol. Microbiol., 57 (2007) 98–102.
  40. R.R. Sun, L. Zhang, Z.F. Zhang, G.H. Chen, F. Jiang, Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter, Water Res., 131 (2018) 239–245.
  41. E.J. Romano, K.H. Schulz, A XPS investigation of SO2, adsorption on ceria–zirconia mixed-metal oxides, Appl. Surf. Sci., 246 (2005) 262–270.
  42. D.J. Asunskis, L. Hanley, Valence band and core level X-ray photoelectron spectroscopy of lead sulfide nanoparticle–polymer composites, Surf. Sci., 601 (2007) 4648–4656.
  43. M. Mullet, S. Boursiquot, M. Abdelmoula, J.-M. Génin, J.-J. Ehrhardt, Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron, Geochim. Cosmochim. Acta, 66 (2002) 829–836.
  44. K. Fichtel, F. Mathes, M. Könneke, H. Cypionka, B. Engelen, Isolation of sulfate-reducing bacteria from sediments above the deep-subseafloor aquifer, Front. Microbiol., 3 (2012) 65.
  45. O. Haouari, M.L. Fardeau, L. Casalot, J.L. Tholozan, M. Hamdi, B. Ollivier, Isolation of sulfate-reducing bacteria from tunisian marine sediments and description of Desulfovibrio bizertensis sp. nov, Int. J. Syst. Evol. Microbiol., 56 (2006) 2909–2913.
  46. B. Sun, J.R. Cole, R.A. Sanford, J.M. Tiedje, Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol, Appl. Environ. Microbiol., 66 (2000) 2408–2013.
  47. A.L. Tarasov, I.A. Borzenkov, Sulfate-reducing bacteria of the genus Desulfovibrio from south vietnam seacoast, Microbiology, 84 (2015) 553–560.
  48. A. Thomas, R.-P. Anthony, O. Bernard, M. Michel, Desulfotomaculum spp. and related gram-positive sulfate-reducing bacteria in deep subsurface environments, Front. Microbiol., 4 (2013) 362.
  49. A.S. Bradley, W.D. Leavitt, D.T. Johnston, Revisiting the dissimilatory sulfate reduction pathway, Geobiology, 9 (2011) 446–457.
  50. L. Zhang, Z.F. Zhang, R.R. Sun, S. Liang, G.H. Chen, F. Jiang, Self-accelerating sulfur reduction via polysulfide to realize a high-rate sulfidogenic reactor for wastewater treatment, Water Res., 130 (2018) 161–167.
  51. F. Liu, J. Zhang, C. Sun, Z. Yu, B. Hou, The corrosion of two aluminium sacrificial anode alloys in SRB-containing sea mud, Corros. Sci., 83 (2014) 375–381.
  52. H. Sass, H. Cypionka, Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov., Syst. Appl. Microbiol., 27 (2004) 541–548.
  53. M.G. Kiran, K. Pakshirajan, G. Das, Heavy metal removal from aqueous solution using sodium alginate immobilized sulfate reducing bacteria: mechanism and process optimization, J. Environ. Manage., 218 (2018) 486–496.
  54. M. Zhang, H. Wang, X. Han, Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment, Chemosphere, 154 (2016) 215–223.
  55. M.G. Kiran, K. Pakshirajan, G. Das, Heavy metal removal from multicomponent system by sulfate reducing bacteria: mechanism and cell surface characterization, J. Hazard. Mater., 324 (2017) 62–70.
  56. O. Mtioui-Sghaier, R. Mendoza-Meroño, E. Fernández-Zapico, S. García-Granda, A. Fernández-González, L. Ktari, M. Dammak, Synthesis of a new Cd(II)–Ni(II) hetero-metallic coordination polymer base on citric acid ligand. X-ray structure, thermal stability, XPS and fluorescence studies, J. Mol. Struct., 1105 (2016) 105–111.
  57. V. Krylova, M. Andrulevičius, Optical, XPS and XRD studies of semiconducting copper sulfide layers on a polyamide film, Int. J. Photoenergy, 3 (2009) 53–58.
  58. Y.Y. Andreev, E.A. Skryleva, I.A. Safonov, Chemical and phase composition of nanosized oxide and passive films on Ni-Cr alloys. II. XPS analysis of films produced by anodic passivation of alloys in 1N H2SO4, Prot. Met. Phys. Chem, 45 (2009) 181–186.
  59. J.M. Macy, J.M. Santini, B.V. Pauling, A.H. O’Neill, L.I. Sly, Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction, Arch. Microbiol., 173 (2000) 49–57.
  60. M.G. Kiran, K. Pakshirajan, G. Das, Heavy metal removal using sulfate-reducing biomass obtained from a lab-scale upflow anaerobic-packed bed reactor, J. Environ. Eng., 142 (2016) C4015010.
  61. G. Cabrera, R. Pérez, J.M. Gómez, A. Abalos, D. Cantero, Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains, J. Hazard. Mater., 135 (2006) 40–46.
  62. D. Barreca, A. Gasparotto, C. Maragno, E. Tondello, Nanostructured cadmium sulfide thin films by XPS, Surf. Sci. Spectra, 9 (2002) 46–53.
  63. L. Zhang, B. Tian, F. Chen, J. Zhang, Nickel sulfide as co-catalyst on nanostructured TiO2 for photocatalytic hydrogen evolution, Int. J. Hydrogen Energy, 37 (2012) 17060–17067.