References
- F. Perreault, A.F. de Faria, M. Elimelech, Environmental applications
of graphene-based nanomaterials, Chem. Soc. Rev.,
44 (2015) 5861–5896.
- D. Cohen-Tanugi, J.C. Grossman, Mechanical strength of nanoporous
graphene as a desalination membrane, Nano Lett.,
14 (2014) 6171–6178.
- L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin,
Reverse osmosis desalination: water sources, technology, and
today’s challenges, Water Res., 43 (2009) 2317–2348.
- M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis,
B.J. Mariñas, A.M. Mayes, Science and technology for water
purification in the coming decades, Nature, 452 (2008) 301-310.
- L. Huang, M. Zhang, C. Li, G. Shi, Graphene-based membranes
for molecular separation, J. Phys. Chem. Lett., 6 (2015)
2806-2815.
- S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith,
S. Dai, S.M. Mahurin, Water desalination using nanoporous
single-layer graphene, Nature Nanotechnol., 10 (2015) 459–464.
- F. Yao, F. Güneş, H.Q. Ta, S.M. Lee, S.J. Chae, K.Y. Sheem,
C.S. Cojocaru, S.S. Xie, Y.H. Lee, Diffusion mechanism of
lithium ion through basal plane of layered graphene, J. Am.
Chem. Soc., 134 (2012) 8646–8654.
- H.L. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson,
Y. Cui, H.J. Dai, Graphene-wrapped sulfur particles as a rechargeable
lithium–sulfur battery cathode material with high capacity
and cycling stability, Nano Lett., 11 (2011) 2644–2647.
- S. Gupta, S.B. Carrizosa, B. McDonald, J. Jasinski, N. Dimakis,
Graphene-family nanomaterials assembled with cobalt oxides
and cobalt nanoparticles as hybrid supercapacitive electrodes
and enzymeless glucose detection platforms, J. Mater. Res.,
32 (2017) 301–322.
- S. Gupta, R. Meek, Metal nanoparticles-grafted functionalized
graphene coated with nanostructured polyaniline ‘hybrid’ nanocomposites
as high-performance biosensors, Sens. Actuators, B,
274 (2018) 85–101.
- Y.X. Liu, X.C. Dong, P. Chen, Biological and chemical sensors
based on graphene materials, Chem. Soc. Rev., 41 (2012) 2283–2307.
- M. Lozada-Hidalgo, S. Hu, O. Marshall, A. Mishchenko,
A.N. Grigorenko, R.A.W. Dryfe, B. Radha, I.V. Grigorieva,
A.K. Geim, Sieving hydrogen isotopes through two-dimensional
crystals, Science, 351 (2016) 68–70.
- D. Konatham, J. Yu, T.A. Ho, A. Striolo, Simulation insights
for graphene-based water desalination membranes, Langmuir,
29 (2013) 11884–11897.
- D. Cohen-Tanugi, L.-C. Lin, J.C. Grossman, Multilayer nanoporous
graphene membranes for water desalination, Nano
Lett., 16 (2016) 1027-1033.
- M.E. Suk, N.R. Aluru, Water transport through ultrathin
graphene, J. Phys. Chem. Lett., 1 (2010) 1590–1596.
- D.M. Stevens, J.Y. Shu, M. Reichert, A. Roy, Next-generation
nanoporous
materials: progress and prospects for reverse
osmosis and nanofiltration, Ind. Eng. Chem. Res., 56 (2017)
10526–10551.
- S. Homaeigohar, M. Elbahri, Graphene membranes for water
desalination, NPG Asia Mater., 9 (2017) e427–1–e427–16.
- A. Nicolai, B.G. Sumpter, V. Meunier, Tunable water desalination
across graphene oxide framework membranes, Phys. Chem.
Chem. Phys., 16 (2014) 8646–8654.
- M. Heiranian, A.B. Farimani, N.R. Aluru, Water desalination
with a single-layer MoS2 nanopore, Nat. Commun., 6 (2015) 1,
doi: 10.1038/ncomms9616.
- H.Q. Gao, Q. Shi, D. Rao, Y. Zhang, J. Su, Y. Liu, Y.H. Wang,
K.M. Deng, R.F. Lu, Rational design and strain engineering
of nanoporous boron nitride nanosheet membranes for water
desalination, J. Phys. Chem. C, 121 (2017) 22105–22113.
- R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva,
H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast
molecular sieving through graphene oxide membranes, Science,
343 (2014) 752–754.
- W. Scholz, H.P. Boehm, Untersuchungen am Graphitoxid. VI.
Betrachtungen zur Struktur des Graphitoxids, Z. Anorg. Allg.
Chem., 369 (1969) 327–340.
- A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite
oxide revisited, J. Phys. Chem. B, 102 (1998) 4477–4482.
- S. Dervin, D.D. Dionysiou, S.C. Pillai, 2D nanostructures for
water purification: graphene and beyond, Nanoscale, 8 (2016)
15115–15131.
- K. He, A.W. Robertson, C.C. Gong, C.S. Allen, Q. Xu,
H. Zandbergen, J.C. Grossman, A.I. Kirkland, J.H. Warner,
Controlled formation of closed-edge nanopores in graphene,
Nanoscale, 7 (2015) 11602–11610.
- Y. Lin, K.A. Watson, J.-W. Kim, D.W. Baggett, D.C. Working,
J.W. Connell, Bulk preparation of holey graphene via controlled
catalytic oxidation, Nanoscale, 5 (2013) 7814–7824.
- S.J. Heerem, C. Dekker, Graphene nanodevices for DNA sequencing,
Nat. Nanotechnol., 11 (2016) 127–136.
- J. Zhao, X.T. Zhao, Z. Jiang, Z. Li, X.C. Fan, J. Zhu, H. Wu,
Y. Su, D. Yang, F.H. Pan, J. Shi, Biomimetic and bioinspired
membranes: preparation and application, Prog. Polym. Sci.,
39 (2014) 1668–1720.
- S.H. Kim, J.S. Nham, Y.S. Jeong, C.S. Lee, S.H. Ha, H.B. Park,
Y.J. Lee, Biomimetic selective ion transport through graphene
oxide membranes functionalized with ion recognizing peptides,
Chem. Mater., 27 (2015) 1255–1261.
- S. Balme, J.-M. Janot, L. Berardo, F. Henn, D. Bonhenry, S.
Kraszewski, F. Picaud, C. Ramseyer, New bioinspired membrane
made of a biological ion channel confined into the cylindrical
nanopore of a solid-state polymer, Nano Lett., 11 (2011)
712–716.
- A. Akbari, P. Sheath, S.T. Martin, D.B. Shinde, M. Shaibani,
P.C. Banerjee, R. Tkacz, D. Bhattacharyya, M. Majumder, Large-area
graphene-based nanofiltration membranes by shear alignment
of discotic nematic liquid crystals of graphene oxide,
Nat. Commun., 7 (2016) 1–12.
- Y. Lin, Y.L. Liao, Z.F. Chen, J.W. Connell, Holey graphene: a
unique structural derivative of graphene, Mater. Res. Lett.,
5 (2017) 209–234.
- B. Dan, N. Behabtu, A. Martinez, J.S. Evans, D.V. Kosynkin,
J.M. Tour, M. Pasquali, I.I. Smalyukh, Liquid crystals of aqueous,
giant graphene oxide flakes, Soft Matter, 7 (2011) 11154–11159.
- S. Gupta, A. Irihamye, Probing the nature of electron transfer
in metalloproteins on graphene-family materials as nanobiocatalytic
scaffold using electrochemistry, AIP Adv., 5 (2015)
037106-1-037106-15.
- W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide,
J. Am. Chem. Soc., 80 (1958) 1339–1339.
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun,
A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis
of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
- M.S.H. Boutilier, J. Lee, V. Chambers, V. Venkatesh, R. Karnik,
Water filtration using plant xylem, PLoS One, 9 (2014),
doi: 10.1371/journal.pone.0089934.
- M.J.A.D. Zohourian Mehr, K. Kabiri, Superabsorbent polymer
materials: a review, Iran. Polym. J., 17 (2008) 451–477.
- S. Gupta, R. Meek, B. Evans, N. Dimakis, Graphene-based
“hybrid” aerogels with carbon nanotubes: mesoporous network–
functionality promoted defect density and electrochemical
activity correlations, J. Appl. Phys., 124 (2018) 124304–1–124304–15.
- H.N. Lim, N.M. Huang, S.S. Lim, I. Harrison, C.H. Chia,
Fabrication and characterization of graphene hydrogel via
hydrothermal approach as a scaffold for preliminary study
of cell growth, Int. J. Nanomed., 6 (2011) 1817–1823.
- X. Xie, J. Bahnemann, S. Wang, Y. Yang, M.R. Hoffmann,
”Nanofiltration“ enabled by super-absorbent polymer beads
for concentrating microorganisms in water samples, Sci. Rep.,
6 (2016) 1-8, doi: 10.1038/srep20516.
- R. Tkacz, R. Oldenbourg, S.B. Mehta, M. Miansari, A. Verma,
M. Majumder, pH dependent isotropic to nematic phase transitions
in graphene oxide dispersions reveal droplet liquid
crystalline phases, Chem. Commun., 50 (2014) 6668–6671.
- B. Dan, G.C. Irvin, M. Pasquali, Continuous and scalable
fabrication of transparent conducting carbon nanotube films,
ACS Nano, 3 (2009) 835–843.
- J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review,
J. Membr. Sci., 107 (1995) 1–21.
- B.J. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in
Microfluidic Devices, Cambridge University Press, Cambridge,
UK, 2010, ISBN 978-0-521-11903-0.
- M. Majumder, N. Chopra, B.J. Hinds, Mass transport through
carbon nanotube membranes in three different regimes: ionic
diffusion and gas and liquid flow, ACS Nano, 5 (2011) 3867–3877.
- W.R. Bowen, J.S. Welfoot, Modelling the performance of membrane
nanofiltration—critical assessment and model development,
Chem. Eng. Sci., 57 (2002) 1121–1137.
- J. Sunner, K. Nishizawa, P. Kebarle, Ion-solvent molecule
interactions in the gas phase. The potassium ion and benzene,
J. Phys. Chem., 85 (1981) 1814–1820.
- G.S. Shi, J. Liu, C.L. Wang, B. Song, Y.S. Tu, J. Hu, H.P. Fang,
Ion enrichment on the hydrophobic carbon-based surface in
aqueous salt solutions due to cation-π interactions, Sci. Rep.,
3 (2013) 1–6.
- S. Gupta, J. Robertson, Ion transport and electrochemical tuning
of Fermi level in single-wall carbon nanotube probed by in situ
Raman scattering, J. Appl. Phys., 100 (2006) 083711–1–083711–9.
- S. Gupta, M. Hughes, A.H. Windle, J. Robertson, Charge
transfer in carbon nanotube actuators investigated using in situ
Raman spectroscopy, J. Appl. Phys., 95 (2004) 2038–2048.
- X.-L. Wang, T. Tsuru, M. Togoh, S.I. Nakao, S. Kimura,
Evaluation of pore structure and electrical properties of nanofiltration
membranes, J. Chem. Eng. Jpn., 28 (1995) 186–192.
- F.G. Donnan, The theory of membrane equilibria, Chem. Rev.,
1 (1924) 73–90.
- J. Schaep, B. Van der Bruggen, C. Vandecasteele, D. Wilms,
Influence of ion size and charge in nanofiltration, Sep. Purif.
Technol., 14 (1998) 155–162.
- T. Cassagneau, J.H. Fendler, High density rechargeable lithiumion
batteries self‐assembled from graphite oxide nanoplatelets
and polyelectrolytes, Adv. Mater., 10 (1998) 877–881.
- S. Espino, H.J. Schenk, Mind the bubbles: achieving stable
measurements of maximum hydraulic conductivity through
woody plant samples, J. Exp. Bot., 62 (2011) 1119–1132.
- J.S. Sperry, Evolution of water transport and xylem structure,
Int. J. Plant Sci., 164 (2003) S115–S127.
- B. Reed, B. Reed, How Much Water is Needed in Emergencies,
World Health Organization, Water, Engineering and Development
Centre, Loughborough University, Leicestershire, UK,
2011. Available at: https://www.who.int/water_sanitation_health/publications/2011/tn9_how_much_water_en.pdf.
Accessed 2014 Jan 14.