References

  1. F. Perreault, A.F. de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials, Chem. Soc. Rev., 44 (2015) 5861–5896.
  2. D. Cohen-Tanugi, J.C. Grossman, Mechanical strength of nanoporous graphene as a desalination membrane, Nano Lett., 14 (2014) 6171–6178.
  3. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges, Water Res., 43 (2009) 2317–2348.
  4. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301-310.
  5. L. Huang, M. Zhang, C. Li, G. Shi, Graphene-based membranes for molecular separation, J. Phys. Chem. Lett., 6 (2015) 2806-2815.
  6. S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene, Nature Nanotechnol., 10 (2015) 459–464.
  7. F. Yao, F. Güneş, H.Q. Ta, S.M. Lee, S.J. Chae, K.Y. Sheem, C.S. Cojocaru, S.S. Xie, Y.H. Lee, Diffusion mechanism of lithium ion through basal plane of layered graphene, J. Am. Chem. Soc., 134 (2012) 8646–8654.
  8. H.L. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H.J. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability, Nano Lett., 11 (2011) 2644–2647.
  9. S. Gupta, S.B. Carrizosa, B. McDonald, J. Jasinski, N. Dimakis, Graphene-family nanomaterials assembled with cobalt oxides and cobalt nanoparticles as hybrid supercapacitive electrodes and enzymeless glucose detection platforms, J. Mater. Res., 32 (2017) 301–322.
  10. S. Gupta, R. Meek, Metal nanoparticles-grafted functionalized graphene coated with nanostructured polyaniline ‘hybrid’ nanocomposites as high-performance biosensors, Sens. Actuators, B, 274 (2018) 85–101.
  11. Y.X. Liu, X.C. Dong, P. Chen, Biological and chemical sensors based on graphene materials, Chem. Soc. Rev., 41 (2012) 2283–2307.
  12. M. Lozada-Hidalgo, S. Hu, O. Marshall, A. Mishchenko, A.N. Grigorenko, R.A.W. Dryfe, B. Radha, I.V. Grigorieva, A.K. Geim, Sieving hydrogen isotopes through two-dimensional crystals, Science, 351 (2016) 68–70.
  13. D. Konatham, J. Yu, T.A. Ho, A. Striolo, Simulation insights for graphene-based water desalination membranes, Langmuir, 29 (2013) 11884–11897.
  14. D. Cohen-Tanugi, L.-C. Lin, J.C. Grossman, Multilayer nanoporous graphene membranes for water desalination, Nano Lett., 16 (2016) 1027-1033.
  15. M.E. Suk, N.R. Aluru, Water transport through ultrathin graphene, J. Phys. Chem. Lett., 1 (2010) 1590–1596.
  16. D.M. Stevens, J.Y. Shu, M. Reichert, A. Roy, Next-generation nanoporous materials: progress and prospects for reverse osmosis and nanofiltration, Ind. Eng. Chem. Res., 56 (2017) 10526–10551.
  17. S. Homaeigohar, M. Elbahri, Graphene membranes for water desalination, NPG Asia Mater., 9 (2017) e427–1–e427–16.
  18. A. Nicolai, B.G. Sumpter, V. Meunier, Tunable water desalination across graphene oxide framework membranes, Phys. Chem. Chem. Phys., 16 (2014) 8646–8654.
  19. M. Heiranian, A.B. Farimani, N.R. Aluru, Water desalination with a single-layer MoS2 nanopore, Nat. Commun., 6 (2015) 1, doi: 10.1038/ncomms9616.
  20. H.Q. Gao, Q. Shi, D. Rao, Y. Zhang, J. Su, Y. Liu, Y.H. Wang, K.M. Deng, R.F. Lu, Rational design and strain engineering of nanoporous boron nitride nanosheet membranes for water desalination, J. Phys. Chem. C, 121 (2017) 22105–22113.
  21. R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science, 343 (2014) 752–754.
  22. W. Scholz, H.P. Boehm, Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids, Z. Anorg. Allg. Chem., 369 (1969) 327–340.
  23. A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited, J. Phys. Chem. B, 102 (1998) 4477–4482.
  24. S. Dervin, D.D. Dionysiou, S.C. Pillai, 2D nanostructures for water purification: graphene and beyond, Nanoscale, 8 (2016) 15115–15131.
  25. K. He, A.W. Robertson, C.C. Gong, C.S. Allen, Q. Xu, H. Zandbergen, J.C. Grossman, A.I. Kirkland, J.H. Warner, Controlled formation of closed-edge nanopores in graphene, Nanoscale, 7 (2015) 11602–11610.
  26. Y. Lin, K.A. Watson, J.-W. Kim, D.W. Baggett, D.C. Working, J.W. Connell, Bulk preparation of holey graphene via controlled catalytic oxidation, Nanoscale, 5 (2013) 7814–7824.
  27. S.J. Heerem, C. Dekker, Graphene nanodevices for DNA sequencing, Nat. Nanotechnol., 11 (2016) 127–136.
  28. J. Zhao, X.T. Zhao, Z. Jiang, Z. Li, X.C. Fan, J. Zhu, H. Wu, Y. Su, D. Yang, F.H. Pan, J. Shi, Biomimetic and bioinspired membranes: preparation and application, Prog. Polym. Sci., 39 (2014) 1668–1720.
  29. S.H. Kim, J.S. Nham, Y.S. Jeong, C.S. Lee, S.H. Ha, H.B. Park, Y.J. Lee, Biomimetic selective ion transport through graphene oxide membranes functionalized with ion recognizing peptides, Chem. Mater., 27 (2015) 1255–1261.
  30. S. Balme, J.-M. Janot, L. Berardo, F. Henn, D. Bonhenry, S. Kraszewski, F. Picaud, C. Ramseyer, New bioinspired membrane made of a biological ion channel confined into the cylindrical nanopore of a solid-state polymer, Nano Lett., 11 (2011) 712–716.
  31. A. Akbari, P. Sheath, S.T. Martin, D.B. Shinde, M. Shaibani, P.C. Banerjee, R. Tkacz, D. Bhattacharyya, M. Majumder, Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide, Nat. Commun., 7 (2016) 1–12.
  32. Y. Lin, Y.L. Liao, Z.F. Chen, J.W. Connell, Holey graphene: a unique structural derivative of graphene, Mater. Res. Lett., 5 (2017) 209–234.
  33. B. Dan, N. Behabtu, A. Martinez, J.S. Evans, D.V. Kosynkin, J.M. Tour, M. Pasquali, I.I. Smalyukh, Liquid crystals of aqueous, giant graphene oxide flakes, Soft Matter, 7 (2011) 11154–11159.
  34. S. Gupta, A. Irihamye, Probing the nature of electron transfer in metalloproteins on graphene-family materials as nanobiocatalytic scaffold using electrochemistry, AIP Adv., 5 (2015) 037106-1-037106-15.
  35. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339–1339.
  36. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4 (2010) 4806–4814.
  37. M.S.H. Boutilier, J. Lee, V. Chambers, V. Venkatesh, R. Karnik, Water filtration using plant xylem, PLoS One, 9 (2014), doi: 10.1371/journal.pone.0089934.
  38. M.J.A.D. Zohourian Mehr, K. Kabiri, Superabsorbent polymer materials: a review, Iran. Polym. J., 17 (2008) 451–477.
  39. S. Gupta, R. Meek, B. Evans, N. Dimakis, Graphene-based “hybrid” aerogels with carbon nanotubes: mesoporous network– functionality promoted defect density and electrochemical activity correlations, J. Appl. Phys., 124 (2018) 124304–1–124304–15.
  40. H.N. Lim, N.M. Huang, S.S. Lim, I. Harrison, C.H. Chia, Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth, Int. J. Nanomed., 6 (2011) 1817–1823.
  41. X. Xie, J. Bahnemann, S. Wang, Y. Yang, M.R. Hoffmann, ”Nanofiltration“ enabled by super-absorbent polymer beads for concentrating microorganisms in water samples, Sci. Rep., 6 (2016) 1-8, doi: 10.1038/srep20516.
  42. R. Tkacz, R. Oldenbourg, S.B. Mehta, M. Miansari, A. Verma, M. Majumder, pH dependent isotropic to nematic phase transitions in graphene oxide dispersions reveal droplet liquid crystalline phases, Chem. Commun., 50 (2014) 6668–6671.
  43. B. Dan, G.C. Irvin, M. Pasquali, Continuous and scalable fabrication of transparent conducting carbon nanotube films, ACS Nano, 3 (2009) 835–843.
  44. J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, J. Membr. Sci., 107 (1995) 1–21.
  45. B.J. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices, Cambridge University Press, Cambridge, UK, 2010, ISBN 978-0-521-11903-0.
  46. M. Majumder, N. Chopra, B.J. Hinds, Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow, ACS Nano, 5 (2011) 3867–3877.
  47. W.R. Bowen, J.S. Welfoot, Modelling the performance of membrane nanofiltration—critical assessment and model development, Chem. Eng. Sci., 57 (2002) 1121–1137.
  48. J. Sunner, K. Nishizawa, P. Kebarle, Ion-solvent molecule interactions in the gas phase. The potassium ion and benzene, J. Phys. Chem., 85 (1981) 1814–1820.
  49. G.S. Shi, J. Liu, C.L. Wang, B. Song, Y.S. Tu, J. Hu, H.P. Fang, Ion enrichment on the hydrophobic carbon-based surface in aqueous salt solutions due to cation-π interactions, Sci. Rep., 3 (2013) 1–6.
  50. S. Gupta, J. Robertson, Ion transport and electrochemical tuning of Fermi level in single-wall carbon nanotube probed by in situ Raman scattering, J. Appl. Phys., 100 (2006) 083711–1–083711–9.
  51. S. Gupta, M. Hughes, A.H. Windle, J. Robertson, Charge transfer in carbon nanotube actuators investigated using in situ Raman spectroscopy, J. Appl. Phys., 95 (2004) 2038–2048.
  52. X.-L. Wang, T. Tsuru, M. Togoh, S.I. Nakao, S. Kimura, Evaluation of pore structure and electrical properties of nanofiltration membranes, J. Chem. Eng. Jpn., 28 (1995) 186–192.
  53. F.G. Donnan, The theory of membrane equilibria, Chem. Rev., 1 (1924) 73–90.
  54. J. Schaep, B. Van der Bruggen, C. Vandecasteele, D. Wilms, Influence of ion size and charge in nanofiltration, Sep. Purif. Technol., 14 (1998) 155–162.
  55. T. Cassagneau, J.H. Fendler, High density rechargeable lithiumion batteries self‐assembled from graphite oxide nanoplatelets and polyelectrolytes, Adv. Mater., 10 (1998) 877–881.
  56. S. Espino, H.J. Schenk, Mind the bubbles: achieving stable measurements of maximum hydraulic conductivity through woody plant samples, J. Exp. Bot., 62 (2011) 1119–1132.
  57. J.S. Sperry, Evolution of water transport and xylem structure, Int. J. Plant Sci., 164 (2003) S115–S127.
  58. B. Reed, B. Reed, How Much Water is Needed in Emergencies, World Health Organization, Water, Engineering and Development Centre, Loughborough University, Leicestershire, UK, 2011. Available at: https://www.who.int/water_sanitation_health/publications/2011/tn9_how_much_water_en.pdf. Accessed 2014 Jan 14.